
Unsupervised Learning

Oliver Schulte

School of Computing Science

Simon Fraser University

Introduction to Deep Learning

2

Overview
� Unsupervised Learning: No label is given

� Tasks:
� Generate Data
� Component Analysis

� Learning Latent Features (Basis Functions)
� Reduce Dimensionality: merge correlated columns

� Methods
� Auto-Encoder Neural Networks

� Principal component analysis
� Convolutional Auto-Encoder
� Variational Auto-Encoder

Auto-Encoders

3

Unsupervised Learning and
Embeddings
� In many settings we are not given labels for observed data

� E.g. text and videos on-line

� It is still possible and useful to learn embeddings = latent
features
ØDimensionality reduction

Ø Eliminate redundancies among features.
ØCan help with missing data.
ØGenerate instances

Ø E.g. generate text, generate images

ØSupport downstream supervised learning

Auto-Encoders

Component Analysis

Auto-Encoders

6

Intuition
� Many high-dimensional data are generated from a few

unobserved settings
� Example: Digit Rotation

� Take a single 3 in a 28x28 = 784 pixel image.
� Make new 3s by
1. Rotating through an angle c1
2. Shifting up or down c2

� Every new 3 can be represented by two numbers (c1,c2).
� Much less than 784!

Auto-Encoders

7

Intuitive Examples
� Sun rose at 6 am each day this week.

Auto-Encoders

Sunrise 1 Sunrise 2 Sunrise 3

Position of Sun, Earth, Earth Rotation

� Student’s marks are explained by their knowledge.

Mark 1 Mark 2 Mark 3 Mark 4 Mark 5 Mark 6

Knowledge

8

Source Separation
� Source Separation Demo

� In a noisy room, two microphones produce a combined signal.
� Can you reconstruct the component signals from the combined

signal?
� Netflix ratings: Mum, Dad, Adriana and Marina all rate movies

on one account. Can Netflix tell which ratings came from
which person?

Auto-Encoders

https://www.youtube.com/watch?v=Qr74sM7oqQc&feature=related

9

Hierarchical Version

� Latent variables at layer 1 explain correlations among observed
variables.

� Latent variables at layer 2 explain correlations among latent
variables at layer 1.

� This is the basic idea of a deep belief network.
� Also convolutional neural network

Mark 1 Mark 2 Mark 3 Mark 4

Knowledge Effort

Z

10

Latent Feature Dimensionality
� Assumption: The number of unobserved components m is

much less than the number n of observed variables.
� The number of latent dimensions m can be specified by the

user, or learned.

Auto-Encoders

Mark 1 Mark 2 Mark 3 Mark 4

Knowledge Effort

11

More Examples
� Video Game Screen: 4000 pixels (say) determined by two

variables (joystick position, button pressed).

Pixed 1 Pixel 2 Pixel 1999 Pixel 2000

position button

…

� The Big 5 in Psychology. Personality Types can be explained
by 5 basic traits.

Answer 1 Answer 2 Answer 99 Answer 100

Openness conscientiousness

…

extraversion agreeableness neuroticism

https://en.wikipedia.org/wiki/Big_Five_personality_traits

12

Consequence: Dimensionality
Reduction
� If a tuple of n observed feature values is well predicted by m

latent features, we can represent the n-tuple instead by a m-
tuple, without (much) loss of information.
ØThe data lie on a m-dimensional manifold.
ØLatent feature learning can be used to reduce the data

dimensionality.

� Video Game example: instead of specifying all 2000 pixels,
specify (position of joystick, button pressed).
ØFrom 2 numbers we can reconstruct 2000.

Auto-Encoders

Learning Methods
Neural Net Auto-Encoders

Auto-Encoders

14

x1

xD

z1

zM

x1

xD

inputs outputs

Auto-Encoders

• An auto-associative neural net has just as many input units as output units.
• The error is the squared difference between input unit xi and output unit oi.
Ø Backpropagation trains the network to recreate the input.
• The hidden layer maps n input values to m hidden node output values.
• If n>mè dimensionality reduction!

input = 1.0

input = 2.0

output = 1.0
error = 0

output = 2.5
error = 0.5 x 0.5 n n

Auto-Association

bottleneck

15

Deep Auto-Encoders

x1

xD

x1

xD

inputs outputs

F1 F2

non-linear

Auto-Encoders

With more than one hidden layer, auto-encoders perform non-linear
dimensionality reduction.

n nbottleneck

Learning Methods
Principal Component Analysis

Component Analysis

17

Principal Component Assumption
� Observed Features are linear combinations of latent features.

� Plus some noise.

Auto-Encoders

X1 X 2 X 3

Z

a b c

X1 = a Z + ε
X2 = b Z +ε
X3 = c Z +ε

18

Principal Component Analysis
� Given number m of principal components, relatively easy to find

optimal latent features.
� Columns are linear combinations of each other (neglecting noise),

e.g.
� X1 = a Z and X2 = b Z implies X2 = b/a X1.

� There is a closed-form solution for finding the set of optimal
components with minimal reconstruction error.
� Ranks components by importance (eigenvalues)
� PCA demo

Auto-Encoders

https://plotly.com/python/pca-visualization/

19

Eigenfaces
� http://en.wikipedia.org/

wiki/Eigenface
� Regular human faces are

reconstructed as linear
combinations of the
eigenfaces

Auto-Encoders

http://en.wikipedia.org/wiki/Eigenface
http://en.wikipedia.org/wiki/Eigenface

20

PCA and Neural Networks
� Theorem A neural net

with the architecture
input-bottleneck-output
computes the same
components as PCA
� Even with non-linear

activation functions

ØAuto-encoders show
similar behaviour to PCA

Auto-Encoders

x1

xD

z1

zM

x1

xD

inputs outputs

21

Preprocessing: Whitening

Auto-Encoders

• Let m= n, i.e. #principal
components = number of
input features.

• Then PCA changes basis so
that

1. Each column has mean
0 and standard
deviation 1.

2. All covariances are 0.

Convolutional Auto-Encoder

Auto-Encoders

23

Unsupervised Filter Learning
� Applying the (deterministic) auto-encoding idea with

convolutions
Ø Learn filters without supervision
� Basic idea is as with associative auto-encoders

1. create a CNN with a bottleneck layer between encoding and
decoding layers

2. Loss function is squared error between input and output

� Problem: convolutions reduce image size
Ø Cannot go from small encoded image to original image size

Auto-Encoders

24

Solving the shrinkage problem
� Basic idea: if an image of size n x n is shrunk to m x m, we pad

the original image with enough 0s to make up for the loss

Auto-Encoders

Original size Shrinkage Padded
original

encoding Reconstruction

n x n m x m n’ x n’ m’ x m’ n x n

Here n’ > m’ > n

25

Example Padding7.2. CONVOLUTIONAL AUTOENCODING 141

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

!

0 0 0 0 0 0 0 0
0 1 0 2 0 3 0 4
0 0 0 0 0 0 0 0
0 4 0 3 0 2 0 1
0 0 0 0 0 0 0 0
0 2 0 1 0 4 0 3
0 0 0 0 0 0 0 0
0 3 0 4 0 1 0 2

Figure 7.3: Padding an image for decoding in a convolutional AE

the decoder reversed the process, in the sense that starting with 128 “pixels”,
we build the image first back to 256, and then 784. All this was done with
fully connected layers. The first had a weight matrix of shape [784, 256],
the second [256, 128], and then, for the decoder, [128, 256] followed by [256,
784]. However, as we learned from our earlier exploration of deep learning
in computer vision, best results come from the use of convolution. In this
section we build an AE using convolutional methods.

The convolutional encoder to reduce image dimensions is unproblematic.
In Chapter 3 we noted how, say, horizontal and vertical strides of two reduce
the image size by a factor of two in each dimension. In Chapter 3 we were not
concerned with compressing the image, so counting in the channel size (how
many filters we applied to each image patch), we actually ended up with
more numbers describing the image at the end of the convolution process
than at the start (the 7 by 7 image times 32 di↵erent filters gives 1568). Here
we definitely want the encoded intermediate layer to have many fewer values
than the original image, so we might, say do three layers of convolution, the
first layer taking us to 14 ⇤ 14 ⇤ 10, the second to 7 ⇤ 7 ⇤ 10, and the third
4 ⇤ 4 ⇤ 10 (the exact numbers, are, of course, hyperparameters).

Decoding with convolution is much less obvious. Convolution never in-
creases image size, so it is not obvious how upsampling might work. The
solution is quite literally to expand the input image before we convolve it
with a bank of filters. In Figure 7.3 we consider the case where the hidden
layer of the AE is a 4 ⇤ 4 image and we want to expand it to an 8 ⇤ 8 image.
We do so by surrounding each “real” pixel with enough zeros to create an
8 ⇤ 8. (The real pixel values are for illustration only.) This requires adding
to each real pixel value zeros to the left, diagonal left, and up. As you might
expect, by adding enough zeros we can expand the image to whatever size
we want. Then, if we convolve this new image with conv2d, a stride of one,
and Same padding, we end up with a new 8 ⇤ 8 image.

Auto-Encoders

Conv2d_transpose handles the padding for you in Tensorflow

26

CN Auto-encoder example
7.2. CONVOLUTIONAL AUTOENCODING 143

9 9 4 5 9 9
9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 7
8 8 9 9 9

9 9 5
6 9 9
8 9 9
9 9 7

1 9 9 1
4 9 9
1 9 4

6 6 2 2 5 5 6 6
5 6 2 2 5 5 5 6

6 6 6 6 6 6 6 6 6 6
5 6 5 6 5 6 5 6 5 6
5 5 5 5 6 6 6 6
5 5 5 5 5 6 5 6

6 6 6 6
5 6 5 6

1 1 6 6 4 4
1 1 5 6 4 4
2 2 6 6
2 2 5 6

Figure 7.5: 14 ⇤ 14 Minst 7, and version reconstructed from 7 ⇤ 7 version

The key line in Figure 7.4 is the call to conv2d transpose. As we just
mentioned, the common case is the use of conv2d transpose to “undo” a
use of standard conv2d, as in:

tf.nn.conv2d(img,feat,[1,2,2,1],"SAME")

This call would downsample the image that the conv2d transpose can up-
sample. If we ignore the third argument to the transpose version, the ar-
guments to the two functions are exactly the same. However they do not
all have the same import. Yes, in both cases the first argument is the 4D
tensor to manipulate, and the second is the bank of convolutional filters to
use. But conv2d transpose, no matter what the stride and padding argu-
ments say, is going to use stride one and Same padding. The purpose of
these arguments is rather to determine how to add all the extra zeros, as in
Figure 7.3 — e.g., to undo the contraction due to a stride of two we would
generally want to pad every real pixel with three extra zero pixels, as in
Figure 7.3.

Unfortunately, it is not possible completely to determine the output
image size of conv2d transpose just from this information. Thus the third
argument to conv2d transpose is the size of the desired output image.
In Figure 7.4 this is [100, 14, 14, 1]: 100 is the batch size, we want a
14 ⇤ 14 output image, and only one channel. The situation that causes the
ambiguity comes from strides greater than one with Same padding. For
example, consider two images, one 7 ⇤ 7 and one 8 ⇤ 8. In both cases, if we
convolve with a stride of two and Same padding, we end up with an image
of size 4. Thus, going the other way, conv2d transpose with stride two and

Auto-Encoders

14 x 14
Input image

7 x 7 encoding
not shown

14 x 14
reconstruction

27

Conclusion
� General intuition for latent feature learning: A small set of unobserved

features explains correlations among observed features.

� Finding a small set of explanatory features -> dimensionality reduction.

� Can visualize as merging feature columns.

� Autoencoders reduce dimensionality by reconstructing input from small
number of hidden units
� Think of each node in the bottleneck layer as representing an unobserved

component

� Principal Component Analysis projects input to m-dimensional subspace

Component Analysis

