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Generative Probabilistic Models

® Supervised learning models P(y | x): the probability of one or

more target variables y given input variables x

® Generative model P(x): just model the distribution of the

inputs




Example: synthetic outputs

® See tutorial

e And face generator
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Figure 7.10: VAE Mnist digits generated from scratch

How can we get an NN to generate output? Doesn't it just map inputs to outputs?
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https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://thispersondoesnotexist.com/

General Neural Network Approach

* Input random vector z to neural net

e Typically from a Gaussian bell curve

X
distribution T

e Network maps Z to output vector X
[ Decoder Network]

® Intuitively, the output should be like T
V4

the observations x

p(Z) = Gaussian bell curve
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Simple Example Mappings

Uniform over [0,1] Uniform over [1,2]

Gaussian with mean O and standard deviation 1  Gaussian with mean 1

and standard deviation 1
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Generate Ring from Gaussian
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How to Train Deep Generative
Models?

e What training objective?

® 2 main ideas
® Variational Auto-Encoder

® (Generative Adversarial Network
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Variational Auto-Encoder (VAE)

Generative Models




VAE Objective Approximates Log-Likelihood

® Loss function for input x = - In(P(x))

e The negative log—likelihood is the standard loss for

generative models

—>» X

® In the decoder architecture [Decoder Network]
P(x) =], 1(f(z) = x) p(z) dz

* 1(f(z) = x) returns 1 if the decoder maps random

N [—>

to X, O O.W. p(Z) = Gaussian bell curve

o Integral is intractable

e VAE architecture is designed so that training loss

approximates integral negative log—likelihood
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VAE Architecture

e Combines Auto—Encoding with

Generative Modeling

X-out
* High-level idea T
1. Training: Design a non-deterministic version [Decoder Network]
of an auto-encoder /1 \
*  Can produce multiple outputs x-out for the X-in| + |e

same input X-in
p(e) = Gaussian bell curve

2. 'Testing: Generate random input z, produce

(non-deterministic) output
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Example: Non-deterministic output
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original reconstruction
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VAE Training Architecture
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VAE Test Architecture

Generative Models
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Example Application

Embeddings for Hockey Players
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Contextualized Player Embedding

The set-up: we see a hockey game sequence.
Using a VAE, compute a contextualized player embedding as a function of
the game sequence.

The VAE generates a distribution P(player, = i| sequence up to time t)

Contextualized Player
Represgntation

¥ ®>( Context

e illith

q(z¢|se, ag, ple)
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Combining LSTM with VAE

° Sequence is processed using LSTM

* VAE generates probabﬂity distribution over players

Sequence Analysis

L

L

player ID

1

X

Hockey Event | LSTM state

e

Generative Models

)[ Decoder Network]

1

z

p(Z) = Gaussian bell curve
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Accuracy in Player Recognition

Given a match sequence, can you predict which player is
likely to have the puck now?

LSTM 12.41% -3.131
LSTM + VAE 48% -2.228

* The player embeddings help with applications like predicting
* Whether a shot will lead to a goal

* The final game outcome
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The Evidence Lower Bound

The Mathematics Behind VAEs
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Background

e Monte Carlo Sarnpling
e The KL Divergence

Generative Models
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Sampling Example

® Area of unit circle = Tt

® Estimate T by randomly sampling points in square, checking

if they lie within circle. Demo
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https://towardsdatascience.com/finding-expected-values-using-monte-carlo-simulation-an-introduction-c083a5b99942

Sample Complexity

e Basic Problem: Sampling can require many data points for

accurate estimate

10 samples

50 samples

2.0

1.5 A

1.0
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100 samples

1000 samples
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https://machinelearningmastery.com/monte-carlo-sampling-for-probability/

Kulback-Leibler Divergence
* KLD: D(q| |p) = 2;q(x;) log(q(x)/p(x;))

= Ellog(q(x)/p(x))]
* Entropy: H(q) = - 2;q(x;) log(q(x))
= - E [log(q)]
® Cross-Entropy: H(q,p) = - Zj q(x;) log(p(x)))
= - E [log(p()]

* Exercise: Prove that D(p| |q) = H(q,p) —H(q)

e Exercise: Recall the “Cross—entropy” of Assignment

=1Yiin@;) + 1 —y)in(l —p})
What is the relationship between this formula and H(q,p)?
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Likelihood: The True Objective

® Recall that the standard objective for generative modelling is
the data likelihood
I, P(x;; ) = |, 1(f(2) = x)) p(z) dz

for observed data points x;,...,x;

e We could estimate this integral for each data point using

Monte Carlo estimation.

1. Sample k z points,
2. apply f

3. Calculate the mean estimate: average {(z,), ..., {(z)
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Sampling With Functions

| . 1.0} R
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Samples from Gaussian distribution of 2D Samples from output distribution
P(2) P(X)

« If fis invertible, then for each output x, there is a unique f1(z) that
generates it.

« Even if fis not invertible, typically for each output x, few samples will

generate Xx.
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Invertible Function Case

® We can replace
P(x; f) = |, 1(f(2) = x) p(z) dz = ], p(f' (x)) dz
® l.e., just consider probability of the random input that

generates the observed output X
* How to compute ' (x)?

® [ earn another neural network for f!!

f-1 f
X "z " X
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Probabilistic Version

® Even if the generating function fis not invertible, few
samples z have a significant likelihood of generating an

observed data point X.

® We can measure this with the posterior probability p(z | x):
given that x was observed, what is the probability that z

generated X.

e The posterior probability is the inverse of a conditional

probability model p(x | z).
* P(x) =, p(x|2) p(z) dz = ], p(x | z) p(z|x) d(2)

p(z[x) p(x[z)
X 2z X
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Approximate Posterior

* Given the approximation
P(x) ~ ], p(x|2) p(z] x) d(z)

* How can we compute p(z | x)?

® Learn a neural network to output (the parameters of)

p(z|x)!

e Hard to get this exactly SO we try to learn an approximate

posterior q(z | x) = p(z | x)

Encoder

X " 9(z[x)

Sampling

decoder

Generative Models
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Monte Carlo Estimation of Data
Likelihood

° P(x) %], p(x|z) pz|x) d(z)

~ Ez~q(z|x) P(X | Z)

® For each data point x

1.

2.
3.
4.

Apply the encoder to find an approximate posterior distribution
q(z | X;)

Sample z from q(z | x)

Apply the decoder to compute p(x | z)

Average the estimates from the z samples to get an estimated P(x)

® See VAL tutorial

e What is the relationship between the encoder-decoder

approximations and the true data likelihood P(x)?

Generative Models
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https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

The Evidence Lower Bound

e The following relationship holds for any approximate posterior

q(z | x), prior p(z), conditional probability p(x | z), unconditional

probability p(x)
log(p(x)) 2 E gz x [log(p(x | 2))] — KLD(q(z| %) | |p(2))
/
True log- ?ample £ Compute log- Penalize
prob rom ‘ probability of differences
apptro>§|ma € x given z between app.
POS e:jlor (decoder) Posterior and
(encoder) true prior

* The bigger the RHS, the better our approximation.

* So we try to maximize it:

argmax p,q 2j E,~q(z | [l0g(p(¥;]2))] ~ KLD(q(z | x) | | p(2))
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Implementing the ELBO objective

® The ELBO is a very general result, known for decades.

® The VAE is a neural architecture proposed by Kingma and
Welling 2014 that fills in q and p as follows.

* q(z]x) = Normal(1(x),07(x))
® L and O are vectors of the same dimension as z

® They are computed by a neural network (encoder)
® p(x|z) = Normal(f(z), 02 *])
® f(z) is a vector of the same dimension as x

e 0?2 is a hyper-parameter
YpPeEr-p

* {(z) is computed by a neural network (decoder)

[
30
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https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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KLD for Gaussians

The ELBO requires us to evaluate KLD(q(z | x;) | | p(2))
For two multi-variate Gaussians N(mg), Z,) and N, (m,, ZP), the KLD

divergence is given by the formula

DN, | |N,) = V5

{tr (Z‘lp Zq) + In | Zp |- In | ZQ |+ (m,- mQ)T Z‘lp (m,,- mQ)T +-d/2
where

d is the latent embedding dimension

tr is the matrix trace (sum of diagonal elements)

In aVAE, we have N,=(0, I) and Zq is diagonal with entries 0;*fori=1,..,d

Exercise: Show that
D(Nq | |N,) = Y5 {2,; 072-In(0)+ m;?}-d/2 where m = m,
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Generative Adversarial Models

GANs
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GAN Architecture

Recall the basic generative NN architecture

How to train? »

VAE: approximate log-likelihood of the T
observations [ Decoder Network ]
GAN: train the generator so that 0
synthetic generated examples z
cannot be distinguished from actual @ - Gaussian bell curve
observations
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Intuition: Taste Test

® Coke is the real thing
® Pepsi wants to imitate coke
e How does Pepsi know they have succeeded?

® When a blind taste test cannot tell the difference!

It’s the real thing
-~ ~Coke.

Generative Models
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Chatbots and the Turing Test

AlanTuring (1950) “Computing Machines and
Intelligence”

* How can we know if a machine is intelligent?
» Test if it can fool a human!

* | oebner Prize

* ChatGPT

35
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https://en.wikipedia.org/wiki/Loebner_Prize

e

Distinguishing Uniform and
(Gaussians

® Fake data: uniform [-8,8]

Real data: Gaussian with mean 5, standard deviation 1

1
1 - gy
y:v;e 7 5)
075
y
0.6
""""""""""""""""""""""""""""""""""""""" i dealdata | S I 1 T 1 T T T T 11
0.25
random inputs | |
16 24 32 4 48 5.6 6.4 7.2 ¢
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The Tester

How can we test whether a network generates realistic outputs?

Train another classifier network to distinguish synthetic from real

examples !

Discriminator D outputs op(x)=P(x is real example)

Why can we not just backpropagate to train the generator?

S oasc o ™

Generative Models

Generator

Y

(O N iy |

PWKQ v 3 —H

Discriminator

Y

N
/

Loss
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The Loss Functions

* Discriminator objective function given real examples R and

fake examples F
V(D,G) = mean, In(op(r)) + meang In(1-0p(t))

® The discriminator wants to maximize V, the generator to
minimize V

¢ Minmax prob]em: GANs are tricky to train

_ Discriminator Generator

b'e Output Objective  Loss Objective Loss
Real op(t) In(op®)  -In(op(r)  -n(opr)  In(op(r)
Fake f on(f) In(1-op(f))  -In(I-op(f)) -In(I-op(f)) In(1-o0x(f))
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Other Loss Functions

® Other loss functions can be considered to help with training,

e.g. in the book:
® The generator wants op(f) to be big

® So maximize In op(f) or minimize -In oy(f)

e However it is more usual to ensure the zero-sum condition:

loss(discriminator) = - loss(generator)
b'e Output Objective  Loss Objective Loss
Real r op(r) In(op(r)) -In(op(r))
Fake f on(f) In(I-op(f))  -In(I1-op(f)) In(op(f)) - In(op(f))
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https://www.deeplearningbook.org/contents/generative_models.html

-

Examples and Demos

° Style GAN
® Deep Fakes
e GANIab

® nvidia-ai-playground

Generative Models
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https://en.wikipedia.org/wiki/StyleGAN
https://en.wikipedia.org/wiki/Deepfake
https://poloclub.github.io/ganlab/
https://www.nvidia.com/en-us/research/ai-playground/

Conclusion

® Generative models generate outputs without an input
* Basic idea: map a random input to an output

* Without a target output, what is the training objective?
® Variational AE: approximate the log-likelihood of the

observed data x

* Also produces an embedding of the input x

® (Generative Adversarial Network: generate synthetic outpus

that cannot be distinguished from actual observations by an

adversarial classifier network
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