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Generative Probabilistic Models
� Supervised learning models P(y|x): the probability of one or 

more target variables y given input variables x
� Generative model P(x): just model the distribution of the 

inputs
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Example: synthetic outputs
� See tutorial

� And face generator

Generative Models

150 CHAPTER 7. UNSUPERVISED NEURAL-NETWORK MODELS

Figure 7.10: VAE Mnist digits generated from scratch

is less distinctive. It is a blander 4, if you will. Most noticeably, the left-
hand 4 (the original) has an uptick on the bottom of the major vertical
stroke that is completely missing on the right.

So far we have considered the problem of generating an image that is
similar to, but recognizably di↵erent from, an input image. However, we
earlier noted that VAEs can also work more freely — given a general class
of images, produce another member of that class. This is a much harder
problem to do well, but the VAE hardly changes at all. Training, in fact,
is exactly the same. The only di↵erence is how we use the VAE. To pro-
duce a new image not based upon an existing one, the VAE generates a
random number (again from a standard normal) but this time inserts it (via
feed dict) to be used as the entire image encoding. Figure 7.10 shows
some examples of the results from the same program that generated the
examples in Figure 7.9, but this time no image was given to emulate. Four
of the images are recognizably Mnist-like digits, but the bottom-right image
seems to be a “3-8” and the one just before it is a mighty poor excuse for
an 8. A stronger model, a lot more training epochs, and more attention to
hyperparameters would produce a much better result.

Before leaving VAEs, a few words for those who would like to better
understand the variational loss of Equation 7.4. In our original formulation,
we generate a new image I 0 upon an original I. To do this we use a con-

How can we get an NN to generate output? Doesn’t it just map inputs to outputs?

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://thispersondoesnotexist.com/
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General Neural Network Approach
� Input random vector z to neural net

� Typically from a Gaussian bell curve 
distribution

� Network maps z to output vector x
� Intuitively, the output should be like 

the observations x

Generative Models
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Simple Example Mappings
Latent distribution +1 distribution

Uniform over [0,1] Uniform over [1,2]

Gaussian with mean 0 and standard deviation 1 Gaussian with mean 1 
and standard deviation 1

Generative Models
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Generate Ring from Gaussian

Generative Models

Figure 2: Given a random variable z with one distribution, we can create
another random variable X = g(z) with a completely different distribution.
Left: samples from a gaussian distribution. Right: those same samples
mapped through the function g(z) = z/10 + z/||z|| to form a ring. This is
the strategy that VAEs use to create arbitrary distributions: the deterministic
function g is learned from data.

can sample directly from P(X) (without performing Markov Chain Monte
Carlo, as in [14]).

To solve Equation 1, there are two problems that VAEs must deal with:
how to define the latent variables z (i.e., decide what information they
represent), and how to deal with the integral over z. VAEs give a definite
answer to both.

First, how do we choose the latent variables z such that we capture latent
information? Returning to our digits example, the ‘latent’ decisions that the
model needs to make before it begins painting the digit are actually rather
complicated. It needs to choose not just the digit, but the angle that the digit
is drawn, the stroke width, and also abstract stylistic properties. Worse, these
properties may be correlated: a more angled digit may result if one writes
faster, which also might tend to result in a thinner stroke. Ideally, we want
to avoid deciding by hand what information each dimension of z encodes
(although we may want to specify it by hand for some dimensions [4]). We
also want to avoid explicitly describing the dependencies—i.e., the latent
structure—between the dimensions of z. VAEs take an unusual approach to
dealing with this problem: they assume that there is no simple interpretation
of the dimensions of z, and instead assert that samples of z can be drawn
from a simple distribution, i.e., N (0, I), where I is the identity matrix. How
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Samples from 
Gaussian distribution of 2D Z Samples from output distribution

f(z) = 
z/10+z/||z|| 
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How to Train Deep Generative 
Models?
� What training objective?

� 2 main ideas
� Variational Auto-Encoder
� Generative Adversarial Network

Generative Models



Variational Auto-Encoder (VAE)

Generative Models
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VAE Objective Approximates Log-Likelihood
� Loss function for input x = - ln(P(x))

� The negative log-likelihood is the standard loss for 
generative models

� In the decoder architecture
P(x) ≈ ∫z 1(f(z) = x) p(z) dz
� 1(f(z) = x) returns 1 if the decoder maps random z 

to x, 0 o.w.

� Integral is intractable
� VAE architecture  is designed so that training loss 

approximates integral negative log-likelihood

Generative Models
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VAE Architecture
� Combines Auto-Encoding with 

Generative Modeling
� High-level idea
1. Training: Design a non-deterministic version 

of an auto-encoder
� Can produce multiple outputs x-out for the 

same input x-in

2. Testing: Generate random input z, produce 
(non-deterministic) output

Generative Models
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Example: Non-deterministic output

7.3. VARIATIONAL AUTOENCODING 149

Figure 7.9: An original image and a VAE reconstruction

VAE reconstruction while the second would not. The claim is that, working
properly, VAEs overcome this di�culty.

First, note that yes, when training VAEs we do use squared-error loss,
but by their very nature VAEs have to accept a larger squared loss because
they can only reconstruct the original image up to some deliberately engi-
neered randomness. Next note that this randomness is situated in the image
encoding in the middle of the VAE architecture. The claim is that this is
the best place for it if VAEs are to work properly.

Mostly implicit but sometimes explicit in our discussion of AEs is the
observation that they achieve dimensionality reduction by noting commonal-
ities between inputs. They tailor embedding to assume the common features,
only “mentioning” the di↵erences. Suppose, as is reasonable, Mnist digits
di↵er slightly in their position on the page. Then one way to exploit this fact
to make the encoding small is to have, say, one of the real numbers in the
encoding specify the overall horizontal position of the digit. (Or perhaps,
with only twenty reals in which to encode the mean for a number 1, we
cannot a↵ord to devote a real to this job, and our AE “decides” some other
variation is more important for a good reconstruction of our image. This is
only an illustration.) The point is, if there is a real that encodes the overall
horizontal position, then the lower-left image of Figure 7.7 is, in fact, very
close to the upper original — it di↵ers only at one encoding position.

At any rate, VAEs do work. Figure 7.9 shows an original Mnist 4 and a
new version. Even a few seconds’ study is su�cient to convince you that they
are di↵erent. Furthermore, they are di↵erent in a way quite typical for VAEs
(or at least for less than great VAEs)— the right image, the reconstruction,

Generative Models

original reconstruction
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VAE Training Architecture
7.3. VARIATIONAL AUTOENCODING 147

Figure 7.8: Structural model of a variational autoencoder

Generative Models

reconstruction/
encoding

Variance: 
noise around 
reconstruction

Regularizer for Mu, Sigma
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VAE Test Architecture
7.3. VARIATIONAL AUTOENCODING 147

Figure 7.8: Structural model of a variational autoencoder

Generative Models

Random 
input



Example Application
Embeddings for Hockey Players

Generative Models
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Contextualized Player Embedding
• The set-up: we see  a hockey game sequence.
• Using a VAE, compute a contextualized player embedding as a function of 

the game sequence. 

• The VAE generates a distribution P(playert = i| sequence up to time t)
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Combining LSTM  with VAE
� Sequence is processed using LSTM

� VAE generates probability distribution over players

Generative Models
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Accuracy in Player Recognition

Method Accuracy Log-likelihood

LSTM 12.41% -3.131

LSTM + VAE 48% -2.228

Generative Models

Given a match sequence, can you predict which player is 
likely to have the puck now?

• The player embeddings help with applications like predicting 
• Whether a shot will lead to a goal
• The final game outcome



The Evidence Lower Bound
The Mathematics Behind VAEs

Generative Models
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Background
� Monte Carlo Sampling

� The KL Divergence

Generative Models
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Sampling Example
� Area of unit circle = π

� Estimate π by randomly sampling points in square, checking 
if they lie within circle. Demo

Generative Models

https://towardsdatascience.com/finding-expected-values-using-monte-carlo-simulation-an-introduction-c083a5b99942
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Sample Complexity
� Basic Problem: Sampling can require many data points for 

accurate estimate

Generative Models

https://machinelearningmastery.com/monte-carlo-sampling-for-probability/
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Kulback-Leibler Divergence
� KLD: D(q||p) = ∑j q(xj) log(q(xj)/p(xj))

                        = Eq[log(q(x)/p(x))]
� Entropy: H(q) = - ∑j q(xj) log(q(xj))

                          = - Eq[log(q(x)]

� Cross-Entropy: H(q,p) = - ∑j q(xj) log(p(xj))
                                   = - Eq[log(p(x)]

� Exercise: Prove that D(p||q)  = H(q,p) – H(q)
� Exercise: Recall the “cross-entropy” of Assignment 
∑!"#$ 𝑦!𝑙𝑛(𝑝!%) + (1 −𝑦!)𝑙𝑛(1 − 𝑝!%)
What is the relationship between this formula and H(q,p)?

Generative Models
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Likelihood: The True Objective
� Recall that the standard objective for generative modelling is 

the data likelihood
Πj P(xj; f) = ∫z 1(f(z) = xj) p(z) dz
for observed data points x1,…,xj 

� We could estimate this integral for each data point using 
Monte Carlo estimation.
1. Sample k z points, 
2. apply f
3. Calculate the mean estimate: average f(z1), …, f(zk)

Generative Models
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Sampling With Functions

Generative Models

Figure 2: Given a random variable z with one distribution, we can create
another random variable X = g(z) with a completely different distribution.
Left: samples from a gaussian distribution. Right: those same samples
mapped through the function g(z) = z/10 + z/||z|| to form a ring. This is
the strategy that VAEs use to create arbitrary distributions: the deterministic
function g is learned from data.

can sample directly from P(X) (without performing Markov Chain Monte
Carlo, as in [14]).

To solve Equation 1, there are two problems that VAEs must deal with:
how to define the latent variables z (i.e., decide what information they
represent), and how to deal with the integral over z. VAEs give a definite
answer to both.

First, how do we choose the latent variables z such that we capture latent
information? Returning to our digits example, the ‘latent’ decisions that the
model needs to make before it begins painting the digit are actually rather
complicated. It needs to choose not just the digit, but the angle that the digit
is drawn, the stroke width, and also abstract stylistic properties. Worse, these
properties may be correlated: a more angled digit may result if one writes
faster, which also might tend to result in a thinner stroke. Ideally, we want
to avoid deciding by hand what information each dimension of z encodes
(although we may want to specify it by hand for some dimensions [4]). We
also want to avoid explicitly describing the dependencies—i.e., the latent
structure—between the dimensions of z. VAEs take an unusual approach to
dealing with this problem: they assume that there is no simple interpretation
of the dimensions of z, and instead assert that samples of z can be drawn
from a simple distribution, i.e., N (0, I), where I is the identity matrix. How
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Samples from Gaussian distribution of 2D 
P(Z)

Samples from output distribution 
P(X)

f(z) = 
z/10+z/||z|| 

• If f is invertible, then for each output x, there is a unique f-1(z) that 
generates it. 

• Even if f is not invertible, typically for each output x, few samples will 
generate x. 



25

Invertible Function Case
� We can replace 

P(x; f) = ∫z 1(f(z) = x) p(z) dz = ∫z p(f-1(x)) dz
� I.e., just consider probability of the random input that 

generates the observed output x
� How to compute f-1(x)? 

� Learn another neural network for f-1!

Generative Models

x z x
f-1 f
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Probabilistic Version
� Even if the generating function f is not invertible, few 

samples z have a significant likelihood of generating an 
observed data point x.

� We can measure this with the posterior probability p(z|x):
given that x was observed, what is the probability that z 
generated x. 

� The posterior probability is the inverse of a conditional 
probability model p(x|z). 

� P(x) = ∫z p(x|z) p(z) dz ≈ ∫z p(x|z) p(z|x) d(z) 

Generative Models

x z x
p(z|x) p(x|z)
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Approximate Posterior
� Given the approximation 

P(x) ≈ ∫z p(x|z) p(z|x) d(z) 
� How can we compute p(z|x)?
� Learn a neural network to output (the parameters of) 

p(z|x)!
� Hard to get this exactly so we try to learn an approximate 

posterior q(z|x) ≈ p(z|x)

Generative Models

x q(z|x) z
Encoder Sampling

p(x|z)
decoder
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Monte Carlo Estimation of Data 
Likelihood
� P(x) ≈ ∫z p(x|z) p(z|x) d(z)
 ≈ Ez∼q(z|x) p(x|z)

� For each data point x
1. Apply the encoder to find an approximate posterior distribution 

q(z|xj) 
2. Sample z from q(z|xj) 
3. Apply the decoder to compute p(x|z) 
4. Average the estimates from the z samples to get an estimated P(x)

� See VAE tutorial

� What is the relationship between the encoder-decoder 
approximations and the true data likelihood P(x)? 

Generative Models

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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The Evidence Lower Bound
� The following relationship holds for any approximate posterior 

q(z|x), prior p(z), conditional probability p(x|z), unconditional 
probability p(x)
log(p(x)) ≥ Ez∼q(z|x) [log(p(x|z))] – KLD(q(z|x)||p(z))

Generative Models

• The bigger the RHS, the better our approximation. 
• So we try to maximize it:

argmax p,q ∑j Ez∼q(z|xj) [log(p(xj|z))] – KLD(q(z|xj)||p(z))

True log-
prob

Sample z 
from 
approximate 
posterior 
(encoder)

Compute log- 
probability of 
x given z 
(decoder)

Penalize 
differences 
between app. 
Posterior and 
true prior
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Implementing the ELBO objective
� The ELBO is a very general result, known for decades.

� The VAE is a neural architecture proposed by Kingma and 
Welling 2014 that fills in q and p as follows.

� q(z|x) = Normal(μ(x),σ2(x))
� μ and σ are vectors of the same dimension as z
� They are computed by a neural network (encoder)

� p(x|z) = Normal(f(z), σ2 *I)
� f(z) is a vector of the same dimension as x
� σ2 is a hyper-parameter
� f(z) is computed by a neural network (decoder)

� Visualization
Generative Models

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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KLD for Gaussians
� The ELBO requires us to evaluate KLD(q(z|xj)||p(z)) 

� For two multi-variate Gaussians NQ(mQ, ΣQ) and Np(mp, Σp), the KLD 
divergence is given by the formula
D(NQ||Np) = ½
{tr (Σ-1

p Σq) + ln| Σp |- ln| ΣQ |+ (mp- mQ)T Σ-1
p (mp- mQ)T }- d/2

where 
� d is the latent embedding dimension

� tr is the matrix trace (sum of diagonal elements)

� In a VAE, we have Np=(0, I) and Σq is diagonal with entries σi
2 for i = 1,..,d

� Exercise: Show that 
D(NQ||Np) = ½{∑i σi

2-ln(σi
2)+ mi

2}-d/2 where m = mQ

Generative Models



Generative Adversarial Models 
GANs

Generative Models
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GAN Architecture
� Recall the basic generative NN architecture

� How to train?
� VAE: approximate log-likelihood of the 

observations
� GAN: train the generator so that 

synthetic generated examples 
cannot be distinguished from actual 
observations

Generative Models
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Intuition: Taste Test
� Coke is the real thing

� Pepsi wants to imitate coke
� How does Pepsi know they have succeeded?
� When a blind taste test cannot tell the difference!

Generative Models
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Chatbots and the Turing Test

Generative Models

Alan Turing (1950) “Computing Machines and 
Intelligence”
• How can we know if a machine is intelligent?
ØTest if it can fool a human!
• Loebner Prize
• ChatGPT

https://en.wikipedia.org/wiki/Loebner_Prize
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Distinguishing Uniform and 
Gaussians
� Fake data: uniform [-8,8]

Real data: Gaussian with mean 5, standard deviation 1

Generative Models
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The Tester
� How can we test whether a network generates realistic outputs?

� Train another classifier network to distinguish synthetic from real 
examples!

� Discriminator D outputs oD(x)=P(x is real example)

� Why can we not just backpropagate to train the generator?

Generative Models

7.4. GENERATIVE ADVERSARIAL NETWORKS 153

Figure 7.11: The structure of a generative adversarial network

numbers, one at a time. One, the “real” data, is generated by a normal
distribution with, e.g., mean 5 and standard deviation 1, so the numbers it
produces are mostly between 3 and 7. The “fake” number is generated by
the generator, which is a one-layer NN. (For this section only the opposite
of a “real” number is a fake number, not a complex one.) The generator
is given a random number, equally likely to be anywhere between –8 and
+8. In order to fool the discriminator it must learn to modify the random
number, presumably to make it come out between 3 and 7. Initially the
generator NN has parameters close to zero, so, in fact, it mostly produces
numbers close to zero as its output.

GANs exercise several aspects of TF we have not covered so far, and
we give the complete code for the simple GAN in Figure 7.12. We have
numbered each small section of the code for reference.

First, look at section 7 where we train the GAN. Pick out the main
training loop, which we have set for 5001 iterations. The first thing we do
is to generate some real data — a random number near 5 — and a random
number between –8 and 8 to feed the generator. We then update, separately,
first the discriminator then the generator. Finally, every 500 iterations we
print out tracking data.

We come back to this code section in a bit, but first we consider at a
high level how things should work. We want the discriminator to output a
single number (o) that is intended to be the probability that the number
it has just seen is from the real distribution. Look briefly at section 3
of the code. When we execute the function discriminator it sets up a
four-layer fully connected feed-forward NN. The first three layers have relu
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The Loss Functions
� Discriminator objective function given real examples R and 

fake examples F 
V(D,G) = meanr ln(oD(r)) + meanf ln(1-oD(r)) 

� The discriminator wants to maximize V, the generator to 
minimize V

� Minmax problem: GANs are tricky to train

Generative Models

Discriminator Generator

x Output Objective Loss Objective Loss

Real r oD(r) ln(oD(r)) -ln(oD(r)) -ln(oD(r)) ln(oD(r))

Fake f oD(f) ln(1-oD(f)) -ln(1-oD(f)) -ln(1-oD(f)) ln(1-oD(f))



39

Other Loss Functions
� Other loss functions can be considered to help with training, 

e.g. in the book:
� The generator wants oD(f) to be big

� So maximize ln oD(f) or minimize -ln oD(f)

� However it is more usual to ensure the zero-sum condition:
loss(discriminator) = - loss(generator)

Generative Models

Book Discriminator Generator

x Output Objective Loss Objective Loss

Real r oD(r) ln(oD(r)) -ln(oD(r))

Fake f oD(f) ln(1-oD(f)) -ln(1-oD(f)) ln(oD(f)) - ln(oD(f))

https://www.deeplearningbook.org/contents/generative_models.html
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Examples and Demos
� Style GAN

� Deep Fakes
� GANlab 
� nvidia-ai-playground

Generative Models

https://en.wikipedia.org/wiki/StyleGAN
https://en.wikipedia.org/wiki/Deepfake
https://poloclub.github.io/ganlab/
https://www.nvidia.com/en-us/research/ai-playground/
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Conclusion
� Generative models generate outputs without an input

� Basic idea: map a random input to an output
� Without a target output, what is the training objective?
� Variational AE: approximate the log-likelihood of the 

observed data x
� Also produces an embedding of the input x 

� Generative Adversarial Network: generate synthetic outpus 
that cannot be distinguished from actual observations by an 
adversarial classifier network

Generative Models


