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In an image restoration problem, you are given an image corrupted by noise X and you want
to recover the original image Y. You can apply Gibbs sampling to a simple Ising Markov
random field model to solve this task.

In this assignment, you will implement Gibbs sampling for the image restoration problem.

Figure 1: Noisy Image
Figure 2: Denoised Image

Figure 3: Graphical model

W use x = {xij} to denote the observed image, with xij ∈ {−1,+1} representing the pixel
at row i and column j. Assume a black-and-white image, with −1 corresponding to white
and +1 to black. The image has dimensions N ×M , so that 1 ≤ i ≤ N and 1 ≤ j ≤ M .
Assume a set of (unobserved) variables y = {yij} representing the true (unknown) image,
with yij ∈ {−1,+1} indicating the value of xij before noise was added. Each (internal) yij
is linked with four immediate neighbors, yi−1,j, yi+1,j, yi,j−1, and yi,j+1 which together are
denoted yNbr(i,j). Pixels at the borders of the image (with i ∈ {1, N} or j ∈ {1,M}) also
have neighbors denoted yNbr(i,j), but these sets are reduced in the obvious way. We denote
E the corresponding set of edges.

The joint probability of y and x can be written (with no prior preference for black or white):

p(y,x) =
1

Z

(
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M∏
j=1

expηyijxij

)
×

 ∏
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(Notice in particular that each pair of neighbors, yij and yi′j′ , factors into the formula only
once, despite that each variable is a neighbor of the other. Failing to account for this will
lead to double counting of β values.) This is equivalent to a Boltzmann (sometimes called
Gibbs) distribution with “energy”:

E(y,x) = −η
N∑
i=1

M∑
j=1

yijxij − β
∑

((i,j),(i′,j′))∈E

yijyi′j′

The system will have lower energy, and hence higher probability, in states in which neighbor-
ing yij variables, and neighboring yij and xij variables, tend to have the same value (assuming
η and β are positive). This captures the fact that each noisy pixel xij is likely to be similar
to the corresponding “true” pixel yij , and that images tend to be “smooth”.

We have derived the conditional probability of the yij is black given its Markov Blanket1,
where we use the logistic function σ(x) = ex

1+ex
:

p(yij = 1 | yNbr(i,j), xij) = σ(2β[
∑

yx,y∈yNbr(i,j)

yx,y] + 2ηxij)

For example:

p(y11 = 1 | yNbr(1,1), x11) = p(y11 = 1 | y21, y12, x11)
= σ(2β[y21 + y12] + 2ηx11)

.

You will apply your implementation to two small, black-and-white images that have been
made available with the problem set. These two noisy images—and the original, undistorted
image from which they derive—are available both in PNG format and in a simple text format
that lists each coordinate pair (i, j) and the corresponding value of xij . You may find it
useful to convert between this text representation and a viewable image format.

We have provided some helper code for this assignment. You can download it here.

What to submit

Please submit the following two files to CourSYS:

• gibbs.py – Your completed implementation.

• report.pdf – A pdf file answering all the questions in this assignment.

1It’s a good practice to try to derive the formula yourself
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https://coursys.sfu.ca/2024sp-cmpt-727-g1/pages/PA2_code/view
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No late submission is accepted.

Collaboration policy

You may freely discuss this coding assignments with other students. All writing must be your
own; it is not acceptable to copy/paste or verbatim transcribe others’ text, code or LaTeX
source.

(4 points) Question 1

Outline a Gibbs sampling algorithm (in pseudocode) that iterates over the pixels in the image
and samples each yij given its Markov blanket. Use the simple approach of sweeping across
the image in row-major fashion on every iteration of the algorithm. Thus, an “iteration” will
generate a complete new sample of y. Allow for a burn-in of B iterations, followed by draws
of S samples.You may assume η and β are fixed constants.

(10 points) Question 2

Implement your algorithm and apply it to the noise image A (a noise10.png.txt). Use values
of η = 1, β = 1, B = 50, and S = 200. On each iteration of your algorithm, compute the
energy E(y,x) using the formula below for the current sample of y and output it to a log
file, keeping track of which values correspond to the burn-in. Run your algorithm with three
different initializations - one in which each yij is initialized to xij , one in which each yij is
initialized to −xij and one in which the yij are set to 1 or +1 at random. Plot the energy
of the model as a function of the iteration number for all three chains and visually inspect
these traces for signs of convergence.

E(y,x) = −η
N∑
i=1

M∑
j=1

yijxij − β
∑

((i,j),(i′,j′))∈E

yijyi′j′

(Notice in particular that each pair of neighbors, yij and yi′j′ , factors into the formula only
once, despite that each variable is a neighbor of the other. Failing to account for this will
lead to double counting of β values.)

• Do all three seem to be converging to the same general region of the posterior, or are
some obviously suboptimal?

• Does the burn-in seem to be adequate in length?

• Is there substantial fluctuation from iteration to iteration, indicating that the chain is
mixing well, or does it become stuck at particular energies for several iterations at a
time?
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This question requires about 6 minutes of computing time. Please plan ahead. You may
want to use a portion of the image for testing.

(4 points) Question 3

Have your program output a restored image after completing its sampling iterations, by
thresholding the estimated posterior probabilities for the yij variables at 0.5 — i.e., by esti-
mating the “true” color of each pixel (i, j) as:

ŷij =

{
+1, if p(yij = 1|x) > 0.5

−1, otherwise

To estimate the required posterior probabilities, store a running count cij of the number of
(retained) samples for which each yij = 1, and then use the Monte Carlo estimate:

p(yij = 1|x) ≈ 1

S

∑
t

1(y
(t)
ij = 1) =

cij
S

where y
(t)
ij represents the tth sample of yij. Restore both the noise images in this way, using

the same values of η, β, B, and S as above and yij initialized to xij. Evaluate the quality of
the restoration by computing the fraction of all pixels that differ between the restored images
(a noise10.png.txt and b noise10.png.txt) and the original image.

• Prepare a figure for each the the two images, showing the original, the noisy version,
and the restoration side by side.

• Report the restoration error for each image.

This question requires about 10 minutes of computing time. Please plan ahead. If you
have implemented your algorithm correctly, your restored images should be quite close to the
original.

Question 4

How many hours did you spend on this assignment?
Please provide your answers in your report.

Thanks to Stephano Ermon for giving us permission to adapt this assignment from Stanford
CS 228.
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