

DZone, Inc. | www.dzone.com

By Matthew McCullough

WHY GET GIT?

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 G

it

w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#94

Getting Started with Git
CONTENTS INCLUDE:
n	 Distributed Version Control Concepts
n	 Cloning Existing Projects
n	 The Typical Local Workflow
n	 The Remote Workflow
n	 CVS & Subversion Interoperability
n	 and more...

Git is a postmodern version control system that offers the
familiar capabilities of CVS or Subversion, but doesn’t stop at
just matching existing tools. Git stretches the very notion of
version control systems (VCS) by its ability to offer almost all of
its features for use offline and without a central server. It is the
brainchild of Linus Torvalds, with the first prototype written in a
vitriolic two-week response to the “BitKeeper debacle”
of 2005.

Today, developers everywhere are migrating in droves to this
exciting platform. Users reference its blistering performance,
usage flexibility, offline capabilities, and collaboration features
as their motivation for switching. Let’s get started with Git.
You’ll be using it like a master in no time at all.

More Than Just a Version Control System
Though originally targeted at Linux kernel developers, Git has
found a home in many other version-needing systems, such as
document revision control. Git is just as capable of versioning
a folder of documents or configuration files as it is of tracking
decades of source code for the Perl project. This has led to
Git being used by writers and network administrators — a case
less likely to be encountered with the cumbersome CVS and
Subversion servers and their ceremonious setup.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

DISTRIBUTED VERSION CONTROL

If you are familiar with one or more traditional or centralized
version control systems like Subversion, there will be several
mental adjustments to make in your migration to Git. The first
is that there is no central server. The second is that there is no
central server. The full history of the repository lives on every
user’s machine that has cloned (checked out) a copy of the
repository. This is the essence of a Distributed Version Control
System (DVCS).

Once over those hurdles, it is quite liberating to be able to
work entirely independently, versioning any new project that
you start, even if in the incubation phase. The ease of setting
up a new Git repository (or ‘repo’ in common parlance) leads
to setting up repos everywhere. It feels frictionless.

	

From there you’ll progress to the second epiphany of being
able to share a repository and a changeset directly with a
colleague without any complicated setup, without a checkin to
a central server, direct network connectivity, or having to worry
about firewalls getting in the way. Git has done technologically
for version control what BitTorrent did for file sharing. It
permanently replaced the spoke and hub structre with a
peer-to-peer model, and there’s no turning back. It supports
transmitting binary sets of changes via USB stick, email, or in
the traditional style, over a network, but amazingly, via HTTP,
FTP, SCP, Samba, SSH, or WebDAV.

GETTING STARTED

Installing Git
Git has a very light footprint for its installation. For most
platforms, you can simple copy the binaries to a folder that is
on the executable search $PATH. Git is primarily written in C,
which means there is a unique distribution for each
supported platform.

The canonical reference for Git installers can be found on a
subpage of the official Git site. http://git-scm.com/download

Establishing User Credentials
Once you have selected a suitable distribution of Git for your
platform, you’ll need to identify yourself with a username and
email address to Git.

In a separation of concerns most satisfying to the purist,
Git does not directly support repository authentication or
authorization. It delegates this in a very functional way to the
protocol (commonly SSH) or operating system (file system
permissions) hosting or serving up the repository. Thus, the

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Git

user information provided during your first Git setup on a given
machine is purely for “credit” of your code contributions.

With the binaries on your $PATH, issue the following three
commands just once per new machine on which you’ll be
using Git. Replace the username and email address with your
preferred credentials.

git config --global user.name “matthew.mccullough”
git config --global user.email “matthewm@ambientideas.com”
git config --global color.ui “auto”

These commands store your preferences in a file named
.gitconfig inside your home directory (~ on UNIX and Mac, and
%USERPROFILE% on Windows).

If you are intrigued by all the potential nuances of a Git setup,
GitHub, a web-based code hosting site, offers several in-depth
tutorials on setting up Git for Linux, Windows, and Mac. Here
are several in-depth Git installation guides:

http://help.github.com/win-git-installation/
http://help.github.com/mac-git-installation/
http://help.github.com/linux-git-installation/

Creating a Repository
Now that Git is installed and the user information established,
you can begin establishing new repositories. From a command
prompt, change directories to either a blank folder or an
existing project that you want to put under version control.
Then initialize the directory as a Git repository by typing the
following commands:

git init
git add .
git commit –m’The first commit‘

The first command in the sequence, init, builds a .git directory
that contains all the metadata and repository history. Unlike
many other version control systems, Git uniquely stores
everything in just a single directory at the top of the project.
No pollution in every directory.

Next, the add command with the dot wildcard tells Git to start
tracking changes for the current directory, it’s files, and for all
folders beneath, if any exist.

Lastly, the commit function takes all previous additions
and makes them permanent in the repository’s history in a
transactional action. Rather than letting Git prompt the user
via the default text editor, the -m option preemptively supplies
the commit message to be saved alongside the
committed files.

It is amazing and exciting to be able to truthfully say that you
can use the basics of Git for locally versioning files with just
these three commands.

CLONING EXISTING PROJECTS

An equally common use case for Git is starting from someone
else’s repository history. This is similar to the checkout concept
in Subversion or other centralized version control systems. The
difference in a DVCS is that the entire history, not just the latest
version, is retrieved and saved to the local user’s disk.

The syntax to pull down a local copy of an existing repo is:

git clone git://github.com/matthewmccullough/hellogitworld.git
or
git clone http://github.com/matthewmccullough/hellogitworld.git
or
git clone git@github.com:matthewmccullough/hellogitworld.git

The protocol difference often signifies whether you have read-
only or writeable access to the origin repository. The final
syntax, which accesses an SSH exposed repository, is the most
common write-enabled protocol.

The clone command performs several subtasks under the
hood. It sets up a remote (a Git repository address bookmark)
named origin that points to the location
git://github.com/matthewmccullough/hellogitworld.git. Next,
clone asks this location for the contents of its entire repository.
Git copies those objects in a zlib-compressed manner over the
network to the requestor’s local disk. Lastly, clone switches to
a branch named master, which is equivalent to Subversion’s
trunk, as the current working copy. The local copy of this
repo is now ready to have edits made, branches created, and
commits issued – all while online or offline.

THE TYPICAL LOCAL WORKFLOW

Editing
Once you’ve cloned or initialized a new Git project, just start
changing files as needed for your current assignment. There
is no pessimistic locking of files by teammates. In fact, there’s
no locking at all. Git operates in a very optimistic manner,
confident that its merge capabilities are a match for any
conflicted changes that you and your colleagues can craft.

Rather than a sequential revision ID, Git marks each commit
with a SHA-1 hash that is unique to the person committing the
changes, the folders, and the files comprising the changeset.
This allows commits to be made independent of any central
coordinating server.

A full SHA-1 hash is 40 hex characters
64de179becc3ed324daab72f7238df1404723672

To efficiently navigate the history of hashes, several symbolic
shorthand notations can be used as listed in the table below.
Additionally, any unique sub-portion of the hash can be
used. Git will let you know when the characters supplied are
not enough to be unique. In most cases, 4-5 characters are
sufficient.

Treeish Definition

HEAD The current committed version

HEAD^ One commit ago

HEAD^^ Two commits ago

HEAD~1 One commit ago

HEAD~3 Three commits ago

:/”Reformatting all” Nearest commit whose comment begins with “Reformatting all”

RELEASE-1.0 Tag applied to the code when it was certified for release.

The complete set of revision specifications can be viewed by
typing: git help rev-parse

Treeish can be used in combination with all Git commands that
accept a specific commit or range of commits.
Examples include:

git log HEAD~3..HEAD
git checkout HEAD^^
git merge RELEASE-1.0

TREEISH & HASHES

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Git

Diff
A patch-style view of the difference between the currently
edited and committed files, or any two points in the past can
easily be summoned. The .. operator signifies a range is being
provided. An omitted second element in the range implies a
destination of the current committed state, also known
as HEAD:

it diff
git diff 32d4..
git diff --summary 32d4..

Git allows for diffing between the local files, the stage files, and
the committed files with a great deal of precision.

Command Definition

git diff everything unstaged diffed to the last commit

git diff --cached everything staged diffed to the last commit

git diff HEAD everything unstaged and staged diffed to the last commit

	

Log
The full list of changes since the beginning of time, or
optionally, since a certain date is right at your fingertips, even
when disconnected from all networks:

git log
git log --since=yesterday
git log --since=2weeks

	

Blame
If trying to discover why and when a certain line was added, cut
to the chase and have Git annotate each line of a source file
with the name and date it came into existence:

git blame <filename>

	

Stashing
Git offers a useful feature for those times when your changes
are in an incomplete state, you aren’t ready to commit them,
and you need to temporarily return to the last committed (e.g.
a fresh checkout). This feature is named “stash” and pushes all
your uncommitted changes onto a stack.

git stash

When you are ready to write the stashed changes back into the
working copies of the files, simply pop them back of the stack.

git stash pop

Aborting
If you want to abort your current uncommitted changes and
restore the working copy to the last committed state, there are
two commands that will help you accomplish this.

git reset --hard

Resetting with the hard option recursively discards all of your
currently uncommitted (unstaged or staged) changes.

To target just one blob, use the checkout command to restore
the file to its previous committed state.

git checkout -- Person.java

Adding (Staging)
When the developer is ready to put files into the next commit,
they must be first staged with the add command. Users can

If you need to move a file, Git can often detect your manual
relocation of the file and will show it as a pending “move.”
However, it is often more prudent to just directly tell Git to
relocate a file and track its new destination.

git mv originalfile.txt newsubdir/newfilename.txt

If you wish to expunge a file from the current state of the
branch, simply tell Git to remove it. It will be put in a pending
deletion state and can be confirmed and completed by the
next commit.

git rm fileyouwishtodelete.txt

Viewing
Daily work calls for strong support of viewing current and
historical facts about your repository, often from different,
perhaps even orthogonal points of view. Git satisfies those
demands in spades.

Status
To check the current status of a project’s local directories and
files (modified, new, deleted, or untracked) invoke the status
command:

git status

	

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Git

navigate to any directory, adding files item by item, or by
wildcard.

git add <file name, folder name, or wildcard>
git add submodule1/PrimaryClass.java
git add .
git add *.java

The -i option activates interactive add mode, in which Git
prompts for the files to be added or excluded from the
next commit.

git add -i

The -p option is a shortcut for activation of the patch
sub-mode of the interactive prompt, allowing for precise pieces
within a file to be selected for staging.

git add -p

Committing
Once all desired blobs are staged, a commit command
transactionally saves the pending additions to the local
repository. The default text $EDITOR will be opened for entry
of the commit message.

git commit

To supply the commit message directly at the command prompt:

git commit –m”<your commit message>”

To view the statistics and facts about the last commit:

git show

If a mistake was made in the last commit’s message, edit the
text while leaving the changed files as-is with:

git amend

Branching
Branching superficially appears much the same as it does in
other version control systems, but the difference lies in the fact
that Git branches can be targeted to exist only locally, or be
shared with (pushed to) the rest of the team. The concept of
inexpensive local branches increases the frequency in which
developers use branching, opening it up to use for quick
private experiments that may be discarded if unsuccessful, or
merged onto a well-known branch if successful.

git branch <new branch name> <from branch>
git branch <new branch name>

Choosing a Branch
Checking out (switching to) a branch is as simple as providing
its name:

git checkout <branch name>

Local and remote git branches are checked out using the same
command, but in somewhat of a radical change of operation
for users coming from other systems like Subversion, remote
branches are read-only until “tracked” and copied to a local
branch. Local branches are where new work is performed and
code is committed.

git branch <new branch name> <from branch>
git checkout <new branch name>

or alternatively, in a combined command:

	

The local branches typically have simple names like master
and experiment. Local branches are shown in white by Git’s
default syntax highlighting. Remote branches are prefixed by
“remotes” and are shown in red.

Merging
Like other popular VCSes, Git allows you to merge one or more
branches into the current branch.

git merge <branch one>
git merge <branch one> <branch two>

If any conflicts are encountered, which is rare with Git, a
notification message is displayed and the files are internally
marked with >>>>>>>>> and <<<<<<<< around the
conflicting portion of the file contents. Once manually resolved,
git-add the resolved file, then commit in the usual manner.

Rebase
Rebasing is the rewinding of existing commits on a branch with
the intent of moving the “branch start point” forward, then
replaying the rewound commits. This allows developers to test
their branch changes safely in isolation on their private branch
just as if they were made on top of the mainline code, including
any recent mainline bug fixes.

git rebase <source branch name>
git rebase <source branch name> <destination branch name>

Tagging
In Git, tagging operates in a simple manner that approximates
other VCSes, but unlike Subversion, tags are immutable from a
commit standpoint. To mark a point in your code timeline with
a tag:

git tag <tag name>
git tag <tag name> <treeish>

THE REMOTE WORKFLOW

Working with remote repositories is one of the primary
features of Git. You can push or pull, depending on
your desired workflow with colleagues and based on the
repository operating system file and protocol permissions.
Git repositories are most typically shared via SSH, though a
lightweight daemon is also provided.

Specifying a folder name as the target of a git add
recursively stages files in any subdirectories.

git checkout -b <new branch name> <from branch>

Starting with Git 1.6.6, a shorthand notation can be used to
track a remote branch with a local branch of exactly the same
name when no local branch of that name already exists and
only one remote location is configured.
git checkout <remote and local branch name>
git checkout performanceexperiment

Listing Branches
To list the complete set of current local and remote branches
known to Git:

git branch -a

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Git

Remotes
While full paths to other repositories can be specified as a
source or destination with the majority of Git commands,
this quickly becomes unwieldy and a shorthand solution is
called for. In Git-speak, these bookmarks of other repository
locations are called remotes.

A remote called origin is automatically created if you cloned
a remote repository. The full address of that remote can be
viewed with:

git remote v

To add a new remote name:

git remote add <remote name> <remote address>
git remote add <remote name> git@github.com:matthewmccullough/ts.git

Push
Pushing with Git is the sending local changes to a colleague
or community repository with sufficiently open permissions as
to allow you to write to it. If the colleague has the pushed-to
branch currently checked out, they will have to re-checkout the
branch to allow the merge engine to potentially weave your
pushed changes into their pending changes.

git push
git push <remote name> <branch name>
git push <remote name> <local branch name:remote branch name>

Fetch
To retrieve remote changes without merging them into your
local branches, simply fetch the blobs. This invisibly stores all
retrieved objects locally in your .git directory at the top of your
project structure, but waits for further explicit instructions for a
source and destination of the merge.

git fetch <remote name>
git merge <remote name/remote branch>

Pull
Pulling is the combination of a fetch and a merge as per the
previous section all in one seamless action.

git pull
git pull <remote name>
git pull <remote name> <branch name>

Bundle
Bundle prepares binary diffs for transport on a USB stick or via
email. These binary diffs can be used to “catch up” a repository
that is behind otherwise too stringent of firewalls to successfully
be reached directly over the network by push or pull.

git bundle create catchupsusan.bundle HEAD~8..HEAD
git bundle create catchupsusan.bundle --since=10.days master

GUIs

Many graphical user interfaces have gained Git support in the
last two years. The most popular Ruby, Perl, and Java/JVM IDEs
have between a good and great level of Git integration today.

Gitk & Git Gui
Standard Git distributions provide two user interfaces written in
Tcl/Tk. The first, Git-Gui offers a panel by which to select files to
add and commit, as well as type a commit message. The latter
offers a diagram visualization of the project’s code history and
branching. They both assume the current working directory as
the repository you wish to inspect.

git gui
gitk

	

IDEs
Java IDEs including IntelliJ, Eclipse (eGit), and NetBeans
(NBGit) all offer native or simple plugin support for Git through
their traditional source code control integration points.

Numerous other platform-native GUIs offer graphically rich
history browsing, branch visualization, merging, staging and
commit features.

Git repository sharing via the simple daemon is introduced at

http://www.kernel.org/pub/software/scm/git/docs/git-daemon.html

Sharing over SSH and Gitosis is documented in the Git
Community Book at
http://book.git-scm.com/4_setting_up_a_private_repository.html

A complete list of Git IDEs and GUIs can be found at:
http://delicious.com/matthew.mccullough/git+gui

CVS, SUBVERSION

On the interoperability front, the most amazing thing about Git
is its ability to read and write to a remote Subversion or CVS
repository while aiming to provide the majority of the benefits
of Git on the local copy of a repository.

Cloning
To convert a Subversion repository that uses the traditional
trunk, tags, branches structure into a Git repository, use a
syntax very similar to that used with a traditional Git repository.

git svn clone --stdlayout <svn repo url>

Please be patient, and note the progress messages. Clones of
large Subversion repositories can take hours to complete.

These diffs can be treated just like any other remote, even
though they are a local file on disk. The contents of the bundle
can be inspected with Is-remote and the contents pulled
into the local repository with fetch. Many Git users add a file
extension of .bundle as a matter of convention.

git ls-remote catchupsusan.bundle
git fetch catchupsusan.bundle

	

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon ®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML pr

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar

Browse our collection of over 90 Free Cheat Sheets
Upcoming Refcardz
Java GUI Development
Adobe Flash Catalyst
Network Security
Maven 3

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Git

RECOMMENDED BOOKSABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

ADVANCED COMMANDS

Git offers commands for both the new user and the expert
alike. Some of the Git features requiring in-depth explanations
can be discovered through the resources links below. These
advanced features include the embedded (manpage-like)
help and ASCII art visualization of branch merge statuses with
show-branch. Git is also able to undo the last commit with
the revert command, binary search for (bisect) the commit
over a range of history that caused the unit tests to begin
failing, check the integrity of the repository with fsck, prune
any orphaned blobs from the tree with gc, and search through
history with grep. And that is literally just the beginning.

This quick overview demonstrates what a rich and deep DVCS
Git truly is, which still being approachable for the newcomer
to this bold new collaborative approach to source code and
version control.

REFERENCES

Git has a rich set of tutorials, screencasts and published books
to satisfy your newfound thirst for knowledge on all things
related to this unique DVCS.

Official Homepage, Releases
For official release notes and ‘man’ pages, take a look at:
http://git-scm.com/ or http://www.kernel.org/pub/software/scm/git/docs/

Manuals, Tutorials
With the growing interest around Git, well-crafted tutorials and
how-to guides are sprouting up across the ‘net. Including:
http://cworth.org/hgbook-git/tour/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://peepcode.com/products/git

Books
Pro Git by Scott Chacon. Free in HTML form. Also available in
printed form from Apress. http://progit.org/book/

Version Control with Git by Jon Loeliger. Printed by O’Reilly.
http://oreilly.com/catalog/9780596520137

Pragmatic Version Control Using Git by Travis Swicegood.
Printed by Pragmatic Programmers.
http://pragprog.com/titles/tsgit/pragmatic-version-control-using-git

Bookmarks
Given the rapid pace of changes to the Git ecosystem, I
maintain a hand-culled list of the most informative pages on
the Internet for the benefit of the Git community.
http://delicious.com/matthew.mccullough/git

Matthew McCullough is an Open Source Architect with the Denver,
Colorado consulting firm Ambient Ideas, LLC which he co-founded in
1997. He’s spent the last 13 years passionately aiming for ever-greater
efficiencies in software development, all while exploring how to share
these practices with his clients and their team members. Matthew is a
nationally touring speaker on all things open source and has provided
long term mentoring and architecture services to over 40 companies

ranging from startups to Fortune 500 firms. Feedback and questions are always
welcomed at matthewm@ambientideas.com

Pushing Git Commits to Subversion
Git commits can be pushed, transactionally, one for one to the
cloned Subversion repository. When the Git commits are are a
good point for sharing with the Subversion colleagues, type:

git svn dcommit

Retrieving Subversion Changes
When changes are inevitably made in Subversion and it is
desired to freshen the Git repo with those changes, rebase to
the latest state of the Subversion repo.

git svn rebase

BUY NOW BUY NOW BUY NOW

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

