Module 5

Data Security and Privacy

Data Security and Privacy

- Data Security
- Who has access to the data?
- Who can change the data?
- What are the threats to the data?
- How do we mitigate the threats?
- Data Privacy
- Who is the data about?
- How can we share data without threatening people's privacy?

Threats to Data Security

- Random corruption
- Software flaws
- Human errors
- Malicious corruption
- Malicious injection

Protecting Data Security

- Access Control
- Error Checking/Correction
- Backup

Access Control

- Define access control for (legitimate) users
- Mandatory vs Discretionary models
- Mandatory: Admin controls all r/w/x permissions
- Includes: Multi-level security
- Discretionary: Each user decides
- Includes: Unix file access control

Bell-LaPadula Model

- Example of Multi-Level Security
- Subjects and Objects both have security levels (e.g. High, Low)
- All read/write must follow two rules (next slide)
- Prevents leakage of information (i.e. confidentiality)

Bell-LaPadula Model

1) A lower security subject cannot read a higher security object
2) A higher security subject cannot write to a lower security object

Biba Integrity Model

- Like Bell-LaPadula, but reversed. Two rules:

1) A higher security subject cannot read from a lower security object
2) A lower security subject cannot write to a higher security object

- Prevents flow of incorrect information (i.e. integrity)

High-water and Low-water mark

- Replaces rule 2) of each model
- High-water Bell-LaPadula: After higher security subject writes to lower security object, increase security level of object to level of subject
- Low-water Biba Integrity: After high security subject reads from lower security object, decrease security level of subject to level of object

File Access Control

- Access control matrix
- Access control list
- Capabilities
- Role-based

		Objects		
Subjects	Alice	Data1	Data2	Data3
	Bob	-	r	-
	Carol	r	r	r

Access Control List

- "Which subjects can read/write/execute this object?"
- e.g. chmod 744 on Unix (what does it mean?)

		Objects		
		Data1	Data2	Data3
Subjects	Alice	rw	r	-
	Bob	-	-	r
	Carol		r	r

Capabilities

- A transferable "reference" that gives a subject permissions to an object
- "Which objects can this subject read/write/execute?"
- f = open("filename", r);

Biometrics

- Visual, sound, fingerprint, gait
- Can be mimicked - photos, recordings, etc.
- Also suffers from base rate fallacy

Token devices

- For key K and time T , output is:

$$
h(K \oplus T)
$$

- Only device owner and authorization checker have the key K

Physical Security

- Preventing damage: Rain, Bug, Storm, Electricity, Earthquake, Tornado, etc.
- Access: Fencing, Walls, Windows
- Monitoring: Guards, Cameras

Error detection

- Small number of bit errors should be detectable
- Append a tag to a file:
- Parity
- Checksums, e.g. CRC32
- Hashes; a weak cryptographic hash may be a good error detection hash (e.g. MD5)
- Input can be any size, output is fixed (32-bit for CRC32, 128-bit for MD5)
- Cannot fix an error

Error correction

- Error Correcting Codes (ECC)
- Used in memory, storage, etc.
- Hamming code example:
- For $2^{\mathrm{k}}-1$ bits of transmission, use k bits of parity
- parity k is in location 2^{k}
- There are 2^{k}-k-1 bits of data in all other locations
- parity k covers all locations with 1 in the k th bit except itself
- Can correct any 1 bit error
- Can detect any 2 bit error if we add a parity bit covering all other bits

Error correction

Data is:

$$
\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} \ldots \mathrm{~d}_{11}
$$

Add parity bits in the right places:

$$
\mathbf{p}_{1} p_{2} d_{1} p_{3} d_{2} d_{3} d_{4} p_{4} d_{5} d_{6} d_{7} d_{8} d_{9} d_{10} d_{11}
$$

Compute parity bits:

$$
\begin{aligned}
& p_{1}=H_{3} \oplus H_{5} \oplus H_{7} \oplus H_{9} \oplus H_{11} \oplus H_{13} \oplus H_{15}=d_{1} \oplus d_{2} \oplus d_{4} \oplus d_{5} \oplus d_{7} \oplus d_{9} \oplus d_{11} \\
& p_{2}=H_{3} \oplus H_{6} \oplus H_{7} \oplus H_{10} \oplus H_{11} \oplus H_{14} \oplus H_{15}=d_{1} \oplus d_{3} \oplus d_{4} \oplus d_{6} \oplus d_{7} \oplus d_{10} \oplus d_{11}
\end{aligned}
$$

Let's say d_{6} was flipped. Which parity bits will seem "wrong"?

$$
d_{4} \text { is } H_{10} \text {, and } 10=(1010)_{2} \text {, so } p_{2} \text { and } p_{4} \text { will seem "wrong" }
$$

Let's say the receiver notices parity bits 2 and 3 seem wrong. Which bit should they correct?

$$
(0110)_{2} \text { is } 6 \text {, and } H_{6} \text { is } d_{3} \text {, so they should correct } d_{3}
$$

Backup

- Used for disaster recovery - we want to recover our data after corruption
- Full backups store all data, but we cannot store too many
- We need to use differential and incremental backups

Differential backup

- Stores all changes between current time and last full backup
- How can we find changes?
- e.g. rsync in Unix: Divide file into chunks, then hash each chunk, and compare the hash for each chunk with stored MD5 hashes
- Only updates chunks with changed hashes

Incremental backup

- Stores all changes between current time and last backup (not necessarily full backup)
- Smallest storage space
- Hard to recover (if full backup was a long time ago)
- What happens if we combine differential and incremental backups?

Replication

- Different from backups: replication keeps no historical state
- Synchronous replication: All file updates should happen (almost) immediately
- Asynchronous replication: Small delay when pushing to replicas is acceptable
- Shadowing for databases

Data Privacy

Data has sensitive attributes and personally identifiable information

How can the data owner allow a data
user to utilize the data without compromising privacy?

Idea: Restrict queries by data user But this leads to inference attacks!

Inference Attack

- Use restricted queries to infer sensitive attributes
- Example: A hospital has a database of patients and their sicknesses, and wants to allow queries on it for research
- For simplicity: Database includes Age, Address, Sickness
- The hospital restricts all queries to COUNT queries
- Bob is the only boy who is 8 and lives in House 1
- Can the data user (who knows Bob's Age and Address) figure out if Bob has mumps?

Inference Attack

Queries only including Bob

- Data user makes a query returning 0 or 1 result:
- COUNT(Age="8" and Address="House 1" and Sickness="mumps")
- Such queries should also be restricted
- But this does not solve difference and intersection inference attacks (next)

Inference Attack

Difference of queries

- Data user makes two queries, and takes their difference:
- Q1 = COUNT(Sickness="mumps")
- Q2 = COUNT((Age="8" and Address="House 1") or Sickness="mumps")
- Q2-Q1 = 0 if Bob has mumps, and 1 if not

Q2

Q1

Q2-Q1

Inference Attack

Intersection of queries

- Data user makes three queries:
- Q1 = COUNT(Age="8" and Sickness="mumps")
- Q2 = COUNT(Address="House 1" and Sickness="mumps")
- Q3 = COUNT((Age="8" or Address="House 1") and Sickness="mumps")
- Q1+Q2-Q3 is 1 if Bob has mumps, and 0 if not

Data Privacy

How can the data user compute Q on data owner's D without compromising privacy?

- k-Anonymity: (D sensitive, Q possibly sensitive) Publish distorted D
- Differential Privacy: (D sensitive) Allow only special queries with mathematical error guarantees
- Secure Multiparty Computation: (D1, D2 sensitive) jointly compute Q without revealing D1, D2 to each other
- Private Information Retrieval: (Q sensitive) Retrieve some information from D without revealing Q

k-Anonymity

- Remove link between identifiers (PII) and sensitive attribute
- Anonymization function is usually deterministic
- After anonymization, each set of identifiers in the table must appear at least k times (= anonymity sets have at least k elements)

k-Anonymity

\left.| Quasi-identifiers | | | | | Quasi-identifiers | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\right]$

"Round Age to nearest 25, Weight to nearest 50 " $\rightarrow \mathrm{k}=2$ (There are three anonymity sets: Size 2, Size 3, Size 4. We take the minimum to be k.)

k-Anonymity

	Quasi-identifiers		
Age	Weight (kg)	Heart disease?	
	25	100	N
Hospital	25	50	Y
	25	100	Y
	50	100	N
	50	50	Y
	100	Y	
	50	100	N
	100	Y	
	25	50	Y

- A flaw in k-anonymity: All members of an anonymity set may have the same sensitive attribute
- e.g. If your friend is around age 25 and weight 50 kg , and you know they're in the table, you know they have heart disease
- To fix this, we can also enforce I-diversity: Every anonymity set must have at least / different sensitive attributes

k-Anonymity

- Another weakness is that completentary releases can compromise k-anonymity:

| | Quasi-
 identifiers
 Weight (kg) |
| :--- | :--- | Sickness

| | Quasi-
 identifiers
 Weight (kg) |
| :--- | :--- | Sickness

Different rounding schemes will weaken k - if your friend has weight 56 kg , you know they have E

k-Anonymity

- Knowing the anonymization scheme can also compromise the scheme. Suppose Age is the only QID. If you know the anonymization scheme is the following:
- Sort patients by age, start with an anonymity set containing only the smallest age.
- Add patients in order to the current anonymity set until desired k and $/$ have been achieved. Then start a new anonymity set with the next person that has not been added.
- Repeat until all patients added; if final anonymity set is too small, merge it with the previous completed anonymity set.
- Suppose the hospital want to achieve $k=3, I=2$. It releases two anonymity sets \{Age\}:\{Heart Disease\} as follows:
- $\{0-40\}:\{N, Y, Y, Y, Y\} \quad\{40-80\}:\{Y, N N\}$
- If you know that your friend is the youngest person in the database, then they definitely have heart disease, otherwise the first set would not be so large!

Differential privacy

- Ensures privacy of data items using a differential mathematical formulation
- Hard to understand, easy to implement
- Anonymization function is random
- Used in iOS 10 (2016)

Differential privacy

Two databases are neighboring if they are the same except for one element (one person's data).

A query Q is ε-differentially private if for all neighbouring databases D_{1} and D_{2} and for all q :

$$
\frac{\operatorname{Pr}\left(Q\left(D_{1}\right)=q\right)}{\operatorname{Pr}\left(Q\left(D_{2}\right)=q\right)} \leq e^{\varepsilon}
$$

Intuitively, changing one person's data is unlikely to change the result (distribution) of a differentially private query $=>$ the query result does not reveal that person's existence!

Differential privacy

Suppose the salaries of 5 employees are:

Employee	Salary
A	$\$ 200$
B	$\$ 210$
C	$\$ 240$
D	$\$ 150$
E	$\$ 400$

For legal compliance, the company is obligated to reveal the average salary of its employees.

Now E has left the company. Suppose someone queries the average salary twice: before and after E left. The results are: $\$ 200, \$ 240$. This reveals E's salary: \$240 * $5-\$ 200$ * $4=\$ 400$.

Differential privacy

Differential privacy: Implicitly add noise before returning the average.

| | | Employee | Salary |
| :--- | :--- | :--- | :--- | :--- |
| Average $=\mathbf{\$ 2 0 0}+$ Noise | Same result | A | $\$ 200+$ Noise |
| | | B | $\$ 210+$ Noise |
| | | C | $\$ 240+$ Noise |

This satisfies differential privacy:

- Difference between two neighboring data sets is dominated by noise
- In other words, one person joining/leaving doesn't change the result as much as the noise itself

Differential privacy

- See notes for two examples with full workings
- Utility can be high with large data sets
- To avoid multiple queries reducing the noise level of the data, we can sample the noise only once until the data changes
- Can be applied to many types of data, but care must be taken regarding definition of "neighboring databases"

Secure Multiparty Computation

Secure Multiparty Computation

- Two parties with different data can jointly compute a known function on the union of their data while sharing no data at all
- e.g. "Who has more customers on this day?"
- Generally (much) slower than directly running the algorithm
- e.g. 20 minutes on 2 cores to complete one AES encryption of 128 bits under SMPC
- Guaranteed correctness without noise

Secure Multiparty Computation
 Yao's garbled circuit

- Construct a boolean circuit representing the problem
- Suppose A is the "garbler", and B is the "evaluator"
- For each boolean gate, A will compute a garbled table and share all garbled tables with Bob

Secure Multiparty Computation Yao's garbled circuit

- For each boolean gate, A computes a garbled table:
- Generate random garbled strings $\mathrm{I}_{0}, \mathrm{~J}_{0}, \mathrm{I}_{1}, \mathrm{~J}_{1}$ representing input bits being 0 or 1
- Generate random garbled strings $\mathrm{O}_{0}, \mathrm{O}_{1}$ representing output bits being 0 or 1
- Encrypt the four possible outputs (random strings) of the table using its inputs as keys, with some long public string A (e.g. 128 bits of 0)
- Randomize the order of the table, share this table

Input 1 (I)	Input 2 (J)	Output (O)
0	0	0
0	1	1
1	0	1
1	1	0

Encrypted Output (O)
$E \mathrm{Enc}_{11, \mathrm{jo}}\left(\mathrm{O}_{1} \\| \mathrm{A}\right)$
$\mathrm{Enc}_{10, \mathrm{jo}}\left(\mathrm{O}_{0} \\| \mathrm{A}\right)$
$E n c_{11, j 1}\left(\mathrm{O}_{0} \\| A\right)$
$E \mathrm{Enc}_{10, \mathrm{j1}}\left(\mathrm{O}_{1} \\| \mathrm{A}\right)$

Secure Multiparty Computation Yao's garbled circuit

- What does Bob do with the table?

Encrypted Output (O)

$$
\begin{aligned}
& \text { Enc }_{11, j 0}\left(\mathrm{O}_{1} \| \mathrm{A}\right) \\
& \mathrm{Enc}_{10, \mathrm{jo}}\left(\mathrm{O}_{0} \| \mathrm{A}\right) \\
& \mathrm{Enc}_{11, \mathrm{j1}}\left(\mathrm{O}_{0} \| \mathrm{A}\right) \\
& \mathrm{Enc}_{10, \mathrm{j1}}\left(\mathrm{O}_{1} \| \mathrm{A}\right)
\end{aligned}
$$

- Suppose Alice's input is I (and it is 0) and Bob's bit is J (and it is 1)
- Alice sends Bob I_{0}, Bob requests J_{1} from Alice
- Using those two strings as a key, Bob tries to decrypt all 4 rows of this table
- Only one row will succeed (Bob knows it succeeds if A shows up)
- Bob will then obtain O_{1} (without knowing the meaning of O_{1})
- This can be used in the next gate, or if it is the final output, its meaning can be determined by asking Alice

Secure Multiparty Computation Yao's garbled circuit

- We achieve these desired properties:
- Bob can compute the gate without knowing the real inputs
- The output is unknown to Bob until Alice reveals what the output means
- Alice does not see the output garbled string until Bob reveals it
- Bob's request from Alice needs to be protected: Bob can't take both J_{0} and J_{1} (otherwise he can cheat), but Bob can't say "I want J." (otherwise Alice knows Bob's input is 1)
- This can be done with oblivious transfer

A different scenario

- What if the data holder's data is not sensitive, but the data user's query is sensitive?
- For example:
- Searching for a patent
- Searching for attributes of a sickness
- Searching for darknet sites
- We want to use Private Information Retrieval in these cases

Private Information Retrieval

- Mechanisms to hide query from data owner
- Data returned is accurate
- Trivial solution: Let data user download entire database, but this is not efficient
- Multi-database PIR can be informationtheoretically secure (and efficient)
- Single-database PIR is possible (see notes)

4-Database Information-Theoretic PIR

- First, represent the database as a 2-dimensional table; Alice wants to obtain one of these elements

$\mathrm{x}_{1,1}$	$\mathrm{x}_{1,2}$	$\mathrm{x}_{1,3}$	$\mathrm{x}_{1,4}$
$\mathrm{x}_{2,1}$	$\mathrm{x}_{2,2}$	$\mathrm{x}_{2,3}$	$\mathrm{x}_{2,4}$
$\mathrm{x}_{3,1}$	$\mathrm{x}_{3,2}$	$\mathrm{x}_{3,3}$	$\mathrm{x}_{3,4}$
$\mathrm{x}_{4,1}$	$\mathrm{x}_{4,2}$	$\mathrm{x}_{4,3}$	$\mathrm{x}_{4,4}$
$\mathrm{x}_{5,1}$	$\mathrm{x}_{5,2}$	$\mathrm{x}_{5,3}$	$\mathrm{x}_{5,4}$

4-Database Information-Theoretic PIR

- Alice randomly picks each row and column with $1 / 2$ chance (not related to the element she truly wants)
- $R=\{$ Rows $2,3,5\}$
- $\mathrm{C}=\{$ Column 3$\}$

$\mathrm{x}_{1,1}$	$\mathrm{x}_{1,2}$	$\mathrm{x}_{1,3}$	$\mathrm{x}_{1,4}$
$\mathrm{x}_{2,1}$	$\mathrm{x}_{2,2}$	$\mathrm{x}_{2,3}$	$\mathrm{x}_{2,4}$
$\mathrm{x}_{3,1}$	$\mathrm{x}_{3,2}$	$\mathrm{x}_{3,3}$	$\mathrm{x}_{3,4}$
$\mathrm{x}_{4,1}$	$\mathrm{x}_{4,2}$	$\mathrm{x}_{4,3}$	$\mathrm{x}_{4,4}$
$\mathrm{x}_{5,1}$	$\mathrm{x}_{5,2}$	$\mathrm{x}_{5,3}$	$\mathrm{x}_{5,4}$

4-Database Information-Theoretic PIR

- Alice creates R' and C' by flipping the rows in R and columns in C corresponding to the element she truly wants. Suppose she wants $X_{2,2}$:
- Flip row 2, R' = \{Rows 3, 5\}
- Flip column 2, C' = \{Columns 2, 3\}
- Then she creates 4 requests to 4 servers. Each request is an XOR of all elements in certain rows and columns:
- DB1 $=X O R$ all elements in the intersection of R and C
- DB2 $=X O R$ all elements in the intersection of R^{\prime} and C
- DB3 = XOR all elements in the intersection of R and C^{\prime}
- DB4 = XOR all elements in the intersection of R^{\prime} and C^{\prime}

4-Database Information-Theoretic PIR

$\mathrm{x}_{1,1}$	$\mathrm{x}_{1,2}$	$\mathrm{x}_{1,3}$	$\mathrm{x}_{1,4}$
$\mathrm{x}_{2,1}$	$\mathrm{x}_{2,2}$	$\mathrm{x}_{2,3}$	$\mathrm{x}_{2,4}$
$\mathrm{x}_{3,1}$	$\mathrm{x}_{3,2}$	$\mathrm{x}_{3,3}$	$\mathrm{x}_{3,4}$
$\mathrm{x}_{4,1}$	$\mathrm{x}_{4,2}$	$\mathrm{x}_{4,3}$	$\mathrm{x}_{4,4}$
$\mathrm{x}_{5,1}$	$\mathrm{x}_{5,2}$	$\mathrm{x}_{5,3}$	$\mathrm{x}_{5,4}$

DB1

$\mathrm{x}_{1,1}$	$\mathrm{x}_{1,2}$	$\mathrm{x}_{1,3}$	$\mathrm{x}_{1,4}$
$\mathrm{x}_{2,1}$	$\mathrm{x}_{2,2}$	$\mathrm{x}_{2,3}$	$\mathrm{x}_{2,4}$
$\mathrm{x}_{3,1}$	$\mathrm{x}_{3,2}$	$\mathrm{x}_{3,3}$	$\mathrm{x}_{3,4}$
$\mathrm{x}_{4,1}$	$\mathrm{x}_{4,2}$	$\mathrm{x}_{4,3}$	$\mathrm{x}_{4,4}$
$\mathrm{x}_{5,1}$	$\mathrm{x}_{5,2}$	$\mathrm{x}_{5,3}$	$\mathrm{x}_{5,4}$

DB3

$\mathrm{x}_{1,1}$	$\mathrm{x}_{1,2}$	$\mathrm{x}_{1,3}$	$\mathrm{x}_{1,4}$
$\mathrm{x}_{2,1}$	$\mathrm{x}_{2,2}$	$\mathrm{x}_{2,3}$	$\mathrm{x}_{2,4}$
$\mathrm{x}_{3,1}$	$\mathrm{x}_{3,2}$	$\mathrm{x}_{3,3}$	$\mathrm{x}_{3,4}$
$\mathrm{x}_{4,1}$	$\mathrm{x}_{4,2}$	$\mathrm{x}_{4,3}$	$\mathrm{x}_{4,4}$
$\mathrm{x}_{5,1}$	$\mathrm{x}_{5,2}$	$\mathrm{x}_{5,3}$	$\mathrm{x}_{5,4}$

DB2

$\mathrm{x}_{1,1}$	$\mathrm{x}_{1,2}$	$\mathrm{x}_{1,3}$	$\mathrm{x}_{1,4}$
$\mathrm{x}_{2,1}$	$\mathrm{x}_{2,2}$	$\mathrm{x}_{2,3}$	$\mathrm{x}_{2,4}$
$\mathrm{x}_{3,1}$	$\mathrm{x}_{3,2}$	$\mathrm{x}_{3,3}$	$\mathrm{x}_{3,4}$
$\mathrm{x}_{4,1}$	$\mathrm{x}_{4,2}$	$\mathrm{x}_{4,3}$	$\mathrm{x}_{4,4}$
$\mathrm{x}_{5,1}$	$\mathrm{x}_{5,2}$	$\mathrm{x}_{5,3}$	$\mathrm{x}_{5,4}$

DB4

Yellow = activated Rows, Green = activated Columns, Orange = intersection; DB replies with XOR of all elements in orange

4-Database Information-Theoretic PIR

- Alice can obtain $\mathrm{x}_{2,2}$ just by XORing all 4 responses (XOR sequence: XOR of all orange boxes in the previous slide)
- The desired element is in the intersection of exactly one of R and R^{\prime}, and exactly one of C and C^{\prime}, so only once in the XOR sequence
- No other element has the above property:
- Every other element is in either both R and R^{\prime}, or both C and C^{\prime}, or neither R and R^{\prime}, or neither C and C^{\prime}
- In the last two cases it is not in the XOR sequence
- If it is in R and R^{\prime}, it appears an even number of times in the XOR sequence depending on if it's in both C and $C^{\prime}(4)$, one of them (2), or neither of them (0) - so it will be cancelled out with XOR
- Vice-versa for C and C'

4-Database Information-Theoretic PIR

- Information-theoretic privacy follows from each row/column being randomly selected at $1 / 2$ chance from any database's perspective
- A database cannot tell which row/column was perturbed, if any
- This is true even if probability of any row/column being perturbed was uneven
- Query length is O(sqrt(n))
- Communication cost is minimum possible - only one bit
- Several other protocols exist with fewer databases/better query length

Which algorithm to use?

- If downloading the entire database solves the problem, PIR is a good solution
- i.e. data is not private
- If no noise is tolerable, k -anonymity and differential privacy are not acceptable
- k-anonymity is used to hide QIDs
- Differential privacy can also collect data

