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Module 5

Data Security and Privacy
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Data Security and Privacy

● Data Security
– Who has access to the data?
– Who can change the data?
– What are the threats to the data?
– How do we mitigate the threats?

● Data Privacy
– Who is the data about?
– How can we share data without threatening people’s 

privacy?
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Threats to Data Security

● Random corruption
● Software flaws
● Human errors
● Malicious corruption
● Malicious injection
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Protecting Data Security

● Access Control
● Error Checking/Correction
● Backup
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Access Control

● Define access control for (legitimate) users
● Mandatory vs Discretionary models

– Mandatory: Admin controls all r/w/x permissions
● Includes: Multi-level security

– Discretionary: Each user decides
● Includes: Unix file access control
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Bell-LaPadula Model

● Example of Multi-Level Security
● Subjects and Objects both have security levels 

(e.g. High, Low)
● All read/write must follow two rules (next slide)
● Prevents leakage of information (i.e. 

confidentiality)
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Bell-LaPadula Model
1) A lower security subject cannot read a higher security object

2) A higher security subject cannot write to a lower security object

High

Medium

Low

cannot write
can read

can write
cannot read
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Biba Integrity Model

● Like Bell-LaPadula, but reversed. Two rules:
1) A higher security subject cannot read from a lower 

security object

2) A lower security subject cannot write to a higher 
security object

● Prevents flow of incorrect information (i.e. 
integrity)
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High-water and Low-water mark

● Replaces rule 2) of each model
● High-water Bell-LaPadula: After higher security 

subject writes to lower security object, increase 
security level of object to level of subject

● Low-water Biba Integrity: After high security 
subject reads from lower security object, 
decrease security level of subject to level of 
object
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File Access Control

● Access control matrix
● Access control list
● Capabilities
● Role-based

Objects

Data1 Data2 Data3

Subjects Alice rw r -

Bob - - r

Carol r r r
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Access Control List

● “Which subjects can read/write/execute this 
object?”

● e.g. chmod 744 on Unix (what does it mean?)

Objects

Data1 Data2 Data3

Subjects Alice rw r -

Bob - - r

Carol r r r

ACL for Data1
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Capabilities

● A transferable “reference” that gives a subject 
permissions to an object

● “Which objects can this subject read/write/execute?”
● f = open("filename", r);

Objects

Data1 Data2 Data3

Subjects Alice rw r -

Bob - - r

Carol r r r

Alice's
capabilities
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Biometrics

● Visual, sound, fingerprint, gait
● Can be mimicked – photos, recordings, etc. 
● Also suffers from base rate fallacy 
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Token devices

● For key K and time T, output is:

● Only device owner and authorization checker 
have the key K

h(K T)⊕
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Physical Security

● Preventing damage: Rain, Bug, Storm, 
Electricity, Earthquake, Tornado, etc.

● Access: Fencing, Walls, Windows
● Monitoring: Guards, Cameras
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Error detection

● Small number of bit errors should be detectable
● Append a tag to a file:

– Parity
– Checksums, e.g. CRC32 
– Hashes; a weak cryptographic hash may be a good error 

detection hash (e.g. MD5)

● Input can be any size, output is fixed (32-bit for 
CRC32, 128-bit for MD5)

● Cannot fix an error



17

Error correction

● Error Correcting Codes (ECC)
● Used in memory, storage, etc.
● Hamming code example:

– For 2k-1 bits of transmission, use k bits of parity
– parity k is in location 2k

– There are 2k-k-1 bits of data in all other locations
– parity k covers all locations with 1 in the kth bit except itself
– Can correct any 1 bit error
– Can detect any 2 bit error if we add a parity bit covering all 

other bits
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Error correction
Data is:

Add parity bits in the right places:

Compute parity bits:

Let's say d
6 
was flipped. Which parity bits will seem “wrong”?

Let's say the receiver notices parity bits 2 and 3 seem wrong. 
Which bit should they correct?

d
1
d

2
d

3
...d
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Backup

● Used for disaster recovery – we want to recover 
our data after corruption

● Full backups store all data, but we cannot store 
too many

● We need to use differential and incremental 
backups
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Differential backup

● Stores all changes between current time and 
last full backup

● How can we find changes?
– e.g. rsync in Unix: Divide file into chunks, then hash 

each chunk, and compare the hash for each chunk 
with stored MD5 hashes

– Only updates chunks with changed hashes 

Full
backup

differential
backup

differential
backup

differential
backup

differential
backup
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Incremental backup

● Stores all changes between current time and 
last backup (not necessarily full backup)

● Smallest storage space
● Hard to recover (if full backup was a long time 

ago)
● What happens if we combine differential and 

incremental backups?

Full
backup

incremental
backup

incremental
backup

incremental
backup

incremental
backup
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Replication

● Different from backups: replication keeps no 
historical state

● Synchronous replication: All file updates should 
happen (almost) immediately

● Asynchronous replication: Small delay when 
pushing to replicas is acceptable

● Shadowing for databases
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Data Privacy

How can the data owner allow a data 
user to utilize the data without 

compromising privacy?

Data has sensitive attributes and 
personally identifiable information

Idea: Restrict queries by data user
But this leads to inference attacks!
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Inference Attack

● Use restricted queries to infer sensitive attributes

● Example: A hospital has a database of patients and their 
sicknesses, and wants to allow queries on it for research

● For simplicity: Database includes Age, Address, Sickness

● The hospital restricts all queries to COUNT queries

● Bob is the only boy who is 8 and lives in House 1

● Can the data user (who knows Bob’s Age and Address) 
figure out if Bob has mumps?
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Inference Attack

● Data user makes a query returning 0 or 1 result:
– COUNT(Age=”8” and Address=”House 1” and 

Sickness=”mumps”)

● Such queries should also be restricted

● But this does not solve difference and intersection 
inference attacks (next)

Queries only including Bob
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Inference Attack

● Data user makes two queries, and takes their difference:
– Q1 = COUNT(Sickness=”mumps”)
– Q2 = COUNT((Age=”8” and Address=”House 1”) or 

Sickness=”mumps”)

● Q2-Q1 = 0 if Bob has mumps, and 1 if not

Difference of queries

Q2 Q1 Q2-Q1

Empty if Bob 
has mumps
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Inference Attack

● Data user makes three queries:
– Q1 = COUNT(Age=”8” and Sickness=”mumps”)
– Q2 = COUNT(Address=”House 1” and Sickness=”mumps”)
– Q3 = COUNT((Age=”8” or Address=”House 1”) and 

Sickness=”mumps”)

● Q1+Q2-Q3 is 1 if Bob has mumps, and 0 if not

Intersection of queries

Q1+Q2 Q3 Q1+Q2-Q3

=-



28

Data Privacy

How can the data user compute Q on 
data owner’s D without compromising 

privacy?

● k-Anonymity: (D sensitive, Q possibly sensitive) 
Publish distorted D

● Differential Privacy: (D sensitive) Allow only special 
queries with mathematical error guarantees

● Secure Multiparty Computation: (D1, D2 sensitive) 
jointly compute Q without revealing D1, D2 to each 
other

● Private Information Retrieval: (Q sensitive) Retrieve 
some information from D without revealing Q



29

k-Anonymity

● Remove link between identifiers (PII) and 
sensitive attribute

● Anonymization function is usually deterministic
● After anonymization, each set of identifiers in 

the table must appear at least k times (= 
anonymity sets have at least k elements)

(data points)

x3

x3
x3

x4
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k-Anonymity

Quasi-identifiers

Age Weight 
(kg)

Heart 
disease?

Hospital 
Subjects

23 86 N

15 65 Y

34 123 Y

55 95 N

32 63 Y

45 89 Y

59 112 N

61 81 Y

15 73 Y

Quasi-identifiers

Age Weight 
(kg)

Heart 
disease?

Hospital 
Subjects

25 100 N

25 50 Y

25 100 Y

50 100 N

25 50 Y

50 100 Y

50 100 N

50 100 Y

25 50 Y

“Round Age to nearest 25, Weight to nearest 50” → k = 2
(There are three anonymity sets: Size 2, Size 3, Size 4. 
 We take the minimum to be k.)
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k-Anonymity

Quasi-identifiers

Age Weight 
(kg)

Heart 
disease?

Hospital 
Subjects

25 100 N

25 50 Y

25 100 Y

50 100 N

25 50 Y

50 100 Y

50 100 N

50 100 Y

25 50 Y

● A flaw in k-anonymity: All 
members of an anonymity set 
may have the same sensitive 
attribute
– e.g. If your friend is around 

age 25 and weight 50kg, and 
you know they're in the 
table, you know they have 
heart disease

● To fix this, we can also enforce 
l-diversity: Every anonymity set 
must have at least l different 
sensitive attributes
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k-Anonymity
● Another weakness is that  completentary releases can compromise k-anonymity:

k = 4 k = 4

Quasi-
identifiers

Weight (kg) Sickness

Hospital 
Subjects

30-60 A

30-60 B

30-60 C

30-60 D

30-60 E

60-150 F

60-150 G

60-150 H

60-150 I

Different rounding schemes will weaken k - if your friend has weight 56 kg, you know they have E 

Quasi-
identifiers

Weight (kg) Sickness

Hospital 
Subjects

25-55 A

25-55 B

25-55 C

25-55 D

55-150 E

55-150 F

55-150 G

55-150 H

55-150 I
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k-Anonymity
● Knowing the anonymization scheme can also compromise the scheme. Suppose 

Age is the only QID. If you know the anonymization scheme is the following:

– Sort patients by age, start with an anonymity set containing only the smallest 
age.

– Add patients in order to the current anonymity set until desired k and l have 
been achieved. Then start a new anonymity set with the next person that has 
not been added.

– Repeat until all patients added; if final anonymity set is too small, merge it 
with the previous completed anonymity set.

● Suppose the hospital want to achieve k = 3, l = 2. It releases two anonymity sets 
{Age}:{Heart Disease} as follows:

- {0-40}: {N, Y, Y, Y, Y}      {40-80}: {Y, N N}

● If you know that your friend is the youngest person in the database, then they 
definitely have heart disease, otherwise the first set would not be so large!
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Differential privacy

● Ensures privacy of data items using a 
differential mathematical formulation

● Hard to understand, easy to implement
● Anonymization function is random
● Used in iOS 10 (2016)
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Motivation: Differencing attack

● Suppose you query the mean salary of a 
company M1 with 500 people, then someone 
joins, and you query it again to obtain M2

● What is the salary of the person who joined?
● Similar: Query for total count of people with a 

certain condition, ethnicity, etc.
● What about sequential queries?
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Differential privacy

Two databases are neighboring if they are the same 
except for one element (one person's data). 

A query Q is ε-differentially private if for all 
neighbouring databases D

1
 and D

2
 and for all q:

Intuitively, changing one person's data is unlikely to 
change the result (distribution) of a differentially private 
query => the query result does not reveal that person's 
existence!

Pr (Q(D1)=q)
Pr (Q(D2)=q)

≤eε
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Hypothesis Testing

Differential privacy is closely related to hypothesis 
testing. Suppose that two hypotheses are:

We use the definition of differential privacy:

The probability of rejecting the null hypothesis H0 at 
significance level a is no higher than eεa ~= a, i.e. any 
test cannot be powerful

Pr (Q(D1)=q)
Pr (Q(D2)=q)

≤eε

H0: The underlying dataset is D which does contain Alice
H1: The underlying dataset is D remove {Alice}
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Achieving differential privacy

In many cases, differential privacy is easily achieved 
with Laplacian noise, with pdf defined as follows:

Consider two neighboring databases query results 
Q(D1) > Q(D2), then for any k we can write k = Q(D1) + 
x1 and k = Q(D2) + x2

f (x ,b)= 1
2b
exp(

−|x|
b

)

Pr (Q(D1)=k )
Pr (Q(D2)=k )

=

1
2b
exp(

−|x1|
b

)

1
2b
exp(

−|x 2|
b

)
≤exp(

|Q(D1)−Q(D2)|
b

)



39

Sensitivity

The sensitivity of a query is the maximum amount it 
can change between neighboring datasets:

Therefore, Laplacian noise with mean 0 and sensitivity 
b achieves ε-DP where ε = S(Q)/b

Sensitivity of common queries:
● Count (including conditional count): 1
● Summation: m where m is the largest possible 

element
● Mean: m/n where m is as above and n is the smallest 

possible dataset

S (Q)=max neighbours|Q(D1)−Q(D2)|
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Intuition of differential privacy

● A small amount of noise on a query output can 
be equivalent to a large amount of noise on 
each individual element

● We are anonymizing a query, not a database
– It will work on any database

● If a query output is possible for a database but 
not for a neighboring database, there is no DP
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Usefulness of differential privacy

Composition theorem
● If Q1 and Q2 are differentially private at levels ε1 

and ε2, (Q1(x), Q2(x)) is (ε1 + ε2)-differentially private
– This protects against sequential release

Post-processing theorem
● If Q is ε-differentially private, g(Q) is ε-

differentially private for any function g
– Any operation on the output is safe
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Differential privacy for data aggregation

● Scenario: Each individual has (private) data, we want to 
compute aggregate without compromising privacy

● DP intuition: Large noise for each person = small noise on result
● Example: Count Mean Sketch for identifying energy-hungry 

websites
– Energy-hungry website is first mapped to a one-hot vector 

using a hash function
– Each bit of the vector is then randomly flipped with some 

probability to introduce noise
– Summing all users’ vectors still produces a number close to 

the true value
● Also possible to jointly train a ML model
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Secure Multiparty Computation

Useful for research, data analytics, collaboration, etc.

Solution Solution

Data Data

Secure
Multiparty

Computation
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Secure Multiparty Computation

● Two parties with different data can jointly 
compute a known function on the union of their 
data while sharing no data at all
● e.g. “Who has more customers on this day?”

● Generally (much) slower than directly running 
the algorithm
● e.g. 20 minutes on 2 cores to complete one 

AES encryption of 128 bits under SMPC
● Guaranteed correctness without noise
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Secure Multiparty Computation

● Construct a boolean circuit representing the 
problem

● Suppose A is the “garbler”, and B is the 
“evaluator”

● For each boolean gate, A will compute a 
garbled table and share all garbled tables with 
Bob

Yao’s garbled circuit
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Secure Multiparty Computation

● For each boolean gate, A computes a garbled table:

● Generate random garbled strings I
0
, J

0
,
 
I
1
,
 
J

1
 representing input 

bits being 0 or 1

● Generate random garbled strings O
0
, O

1
 representing output bits 

being 0 or 1
● Encrypt the four possible outputs (random strings) of the table 

using its inputs as keys, with some long public string A (e.g. 128 
bits of 0)

● Randomize the order of the table, share this table

Yao’s garbled circuit

Input 1 (I) Input 2 (J) Output (O)

0 0 0

0 1 1

1 0 1

1 1 0

Encrypted Output (O)

Enc
I1, J0

(O
1
||A)

Enc
I0, J0

(O
0
||A)

Enc
I1, J1

(O
0
||A)

Enc
I0, J1

(O
1
||A)

This table is shared with Bob
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Secure Multiparty Computation

● What does Bob do with the table?

Yao’s garbled circuit

Encrypted Output (O)

Enc
I1, J0

(O
1
||A)

Enc
I0, J0

(O
0
||A)

Enc
I1, J1

(O
0
||A)

Enc
I0, J1

(O
1
||A)

● Suppose Alice's input is I (and it is 0) and Bob's bit is J (and it is 1)

● Alice sends Bob I
0
, Bob requests J

1
 from Alice

● Using those two strings as a key, Bob tries to decrypt all 4 rows of 
this table

● Only one row will succeed (Bob knows it succeeds if A shows up)

● Bob will then obtain O
1
 (without knowing the meaning of O

1
)

● This can be used in the next gate, or if it is the final output, its 
meaning can be determined by asking Alice
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Secure Multiparty Computation

● We achieve these desired properties:
● Bob can compute the gate without knowing the 

real inputs
● The output is unknown to Bob until Alice reveals 

what the output means
● Alice does not see the output garbled string until 

Bob reveals it
● Bob's request from Alice needs to be protected: 

Bob can't take both J
0
 and J

1
 (otherwise he can 

cheat), but Bob can't say “I want J
1
” (otherwise 

Alice knows Bob's input is 1)
● This can be done with oblivious transfer

Yao’s garbled circuit
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A different scenario

● What if the data holder’s data is not sensitive, 
but the data user’s query is sensitive?

● For example:
● Searching for a patent
● Searching for attributes of a sickness
● Searching for darknet sites

● We want to use Private Information Retrieval in 
these cases
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Private Information Retrieval

● Mechanisms to hide query from data owner
● Data returned is accurate
● Trivial solution: Let data user download entire 

database, but this is not efficient
● Multi-database PIR can be information-

theoretically secure (and efficient)
● Single-database PIR is possible (see notes)
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4-Database Information-Theoretic PIR

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

● First, represent the database as a 2-dimensional 
table; Alice wants to obtain one of these elements
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4-Database Information-Theoretic PIR

● Alice randomly picks each row and column with ½ 
chance (not related to the element she truly wants)
● R = {Rows 2, 3, 5}
● C = {Column 3}

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4
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4-Database Information-Theoretic PIR

● Alice creates R’ and C’ by flipping the rows in R and 
columns in C corresponding to the element she truly 
wants. Suppose she wants x2,2:
● Flip row 2, R’ = {Rows 3, 5}
● Flip column 2, C’ = {Columns 2, 3}

● Then she creates 4 requests to 4 servers. Each request 
is an XOR of all elements in certain rows and columns:
● DB1 = XOR all elements in the intersection of R and C
● DB2 = XOR all elements in the intersection of R’ and C
● DB3 = XOR all elements in the intersection of R and C’
● DB4 = XOR all elements in the intersection of R’ and C’
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4-Database Information-Theoretic PIR

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB1

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB2

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB3

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB4
Yellow = activated Rows, Green = activated Columns, Orange = intersection;
DB replies with XOR of all elements in orange 
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4-Database Information-Theoretic PIR

● Alice can obtain x2,2 just by XORing all 4 responses (XOR 
sequence: XOR of all orange boxes in the previous slide)

● The desired element is in the intersection of exactly one of R 
and R’, and exactly one of C and C’, so only once in the XOR 
sequence

● No other element has the above property:
● Every other element is in either both R and R’, or both C 

and C’, or neither R and R’, or neither C and C’
● In the last two cases it is not in the XOR sequence
● If it is in R and R’, it appears an even number of times in the 

XOR sequence depending on if it’s in both C and C’ (4), one 
of them (2), or neither of them (0) – so it will be cancelled 
out with XOR

● Vice-versa for C and C’
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4-Database Information-Theoretic PIR

● Information-theoretic privacy follows from each 
row/column being randomly selected at ½ chance 
from any database’s perspective
● A database cannot tell which row/column was 

perturbed, if any
● This is true even if probability of any row/column 

being perturbed was uneven
● Query length is O(sqrt(n))
● Communication cost is minimum possible – only 

one bit
● Several other protocols exist with fewer 

databases/better query length
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Which algorithm to use?

● If downloading the entire database solves the 
problem, PIR is a good solution
– i.e. data is not private

● If no noise is tolerable, k-anonymity and 
differential privacy are not acceptable

● k-anonymity is used to hide QIDs
● Differential privacy can also collect data
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