
1

Module 5

Data Security and Privacy

2

Data Security and Privacy

● Data Security
– Who has access to the data?
– Who can change the data?
– What are the threats to the data?
– How do we mitigate the threats?

● Data Privacy
– Who is the data about?
– How can we share data without threatening people’s

privacy?

3

Threats to Data Security

● Random corruption
● Software flaws
● Human errors
● Malicious corruption
● Malicious injection

4

Protecting Data Security

● Access Control
● Error Checking/Correction
● Backup

5

Access Control

● Define access control for (legitimate) users
● Mandatory vs Discretionary models

– Mandatory: Admin controls all r/w/x permissions
● Includes: Multi-level security

– Discretionary: Each user decides
● Includes: Unix file access control

6

Bell-LaPadula Model

● Example of Multi-Level Security
● Subjects and Objects both have security levels

(e.g. High, Low)
● All read/write must follow two rules (next slide)
● Prevents leakage of information (i.e.

confidentiality)

7

Bell-LaPadula Model
1) A lower security subject cannot read a higher security object

2) A higher security subject cannot write to a lower security object

High

Medium

Low

cannot write
can read

can write
cannot read

8

Biba Integrity Model

● Like Bell-LaPadula, but reversed. Two rules:
1) A higher security subject cannot read from a lower

security object

2) A lower security subject cannot write to a higher
security object

● Prevents flow of incorrect information (i.e.
integrity)

9

High-water and Low-water mark

● Replaces rule 2) of each model
● High-water Bell-LaPadula: After higher security

subject writes to lower security object, increase
security level of object to level of subject

● Low-water Biba Integrity: After high security
subject reads from lower security object,
decrease security level of subject to level of
object

10

File Access Control

● Access control matrix
● Access control list
● Capabilities
● Role-based

Objects

Data1 Data2 Data3

Subjects Alice rw r -

Bob - - r

Carol r r r

11

Access Control List

● “Which subjects can read/write/execute this
object?”

● e.g. chmod 744 on Unix (what does it mean?)

Objects

Data1 Data2 Data3

Subjects Alice rw r -

Bob - - r

Carol r r r

ACL for Data1

12

Capabilities

● A transferable “reference” that gives a subject
permissions to an object

● “Which objects can this subject read/write/execute?”
● f = open("filename", r);

Objects

Data1 Data2 Data3

Subjects Alice rw r -

Bob - - r

Carol r r r

Alice's
capabilities

13

Biometrics

● Visual, sound, fingerprint, gait
● Can be mimicked – photos, recordings, etc.
● Also suffers from base rate fallacy

14

Token devices

● For key K and time T, output is:

● Only device owner and authorization checker
have the key K

h(K T)⊕

15

Physical Security

● Preventing damage: Rain, Bug, Storm,
Electricity, Earthquake, Tornado, etc.

● Access: Fencing, Walls, Windows
● Monitoring: Guards, Cameras

16

Error detection

● Small number of bit errors should be detectable
● Append a tag to a file:

– Parity
– Checksums, e.g. CRC32
– Hashes; a weak cryptographic hash may be a good error

detection hash (e.g. MD5)

● Input can be any size, output is fixed (32-bit for
CRC32, 128-bit for MD5)

● Cannot fix an error

17

Error correction

● Error Correcting Codes (ECC)
● Used in memory, storage, etc.
● Hamming code example:

– For 2k-1 bits of transmission, use k bits of parity
– parity k is in location 2k

– There are 2k-k-1 bits of data in all other locations
– parity k covers all locations with 1 in the kth bit except itself
– Can correct any 1 bit error
– Can detect any 2 bit error if we add a parity bit covering all

other bits

18

Error correction
Data is:

Add parity bits in the right places:

Compute parity bits:

Let's say d
6
was flipped. Which parity bits will seem “wrong”?

Let's say the receiver notices parity bits 2 and 3 seem wrong.
Which bit should they correct?

d
1
d

2
d

3
...d

11

p
1
p

2
d

1
p

3
d

2
d

3
d

4
p

4
d

5
d

6
d

7
d

8
d

9
d

10
d

11

p
1
= H

3
H⊕

5
H⊕

7
H⊕

9
H⊕

11
H⊕

13
H⊕

15
= d

1
d⊕

2
d⊕

4
d⊕

5
d⊕

7
d⊕

9
d⊕

11

p
2
= H

3
H⊕

6
H⊕

7
H⊕

10
H⊕

11
H⊕

14
H⊕

15
= d

1
d⊕

3
d⊕

4
d⊕

6
d⊕

7
d⊕

10
d⊕

11

...

d
4
 is H

10
, and 10 = (1010)

2
, so p

2
 and p

4
 will seem “wrong”

(0110)
2
 is 6, and H

6
 is d

3
, so they should correct d

3

19

Backup

● Used for disaster recovery – we want to recover
our data after corruption

● Full backups store all data, but we cannot store
too many

● We need to use differential and incremental
backups

20

Differential backup

● Stores all changes between current time and
last full backup

● How can we find changes?
– e.g. rsync in Unix: Divide file into chunks, then hash

each chunk, and compare the hash for each chunk
with stored MD5 hashes

– Only updates chunks with changed hashes

Full
backup

differential
backup

differential
backup

differential
backup

differential
backup

21

Incremental backup

● Stores all changes between current time and
last backup (not necessarily full backup)

● Smallest storage space
● Hard to recover (if full backup was a long time

ago)
● What happens if we combine differential and

incremental backups?

Full
backup

incremental
backup

incremental
backup

incremental
backup

incremental
backup

22

Replication

● Different from backups: replication keeps no
historical state

● Synchronous replication: All file updates should
happen (almost) immediately

● Asynchronous replication: Small delay when
pushing to replicas is acceptable

● Shadowing for databases

23

Data Privacy

How can the data owner allow a data
user to utilize the data without

compromising privacy?

Data has sensitive attributes and
personally identifiable information

Idea: Restrict queries by data user
But this leads to inference attacks!

24

Inference Attack

● Use restricted queries to infer sensitive attributes

● Example: A hospital has a database of patients and their
sicknesses, and wants to allow queries on it for research

● For simplicity: Database includes Age, Address, Sickness

● The hospital restricts all queries to COUNT queries

● Bob is the only boy who is 8 and lives in House 1

● Can the data user (who knows Bob’s Age and Address)
figure out if Bob has mumps?

25

Inference Attack

● Data user makes a query returning 0 or 1 result:
– COUNT(Age=”8” and Address=”House 1” and

Sickness=”mumps”)

● Such queries should also be restricted

● But this does not solve difference and intersection
inference attacks (next)

Queries only including Bob

26

Inference Attack

● Data user makes two queries, and takes their difference:
– Q1 = COUNT(Sickness=”mumps”)
– Q2 = COUNT((Age=”8” and Address=”House 1”) or

Sickness=”mumps”)

● Q2-Q1 = 0 if Bob has mumps, and 1 if not

Difference of queries

Q2 Q1 Q2-Q1

Empty if Bob
has mumps

27

Inference Attack

● Data user makes three queries:
– Q1 = COUNT(Age=”8” and Sickness=”mumps”)
– Q2 = COUNT(Address=”House 1” and Sickness=”mumps”)
– Q3 = COUNT((Age=”8” or Address=”House 1”) and

Sickness=”mumps”)

● Q1+Q2-Q3 is 1 if Bob has mumps, and 0 if not

Intersection of queries

Q1+Q2 Q3 Q1+Q2-Q3

=-

28

Data Privacy

How can the data user compute Q on
data owner’s D without compromising

privacy?

● k-Anonymity: (D sensitive, Q possibly sensitive)
Publish distorted D

● Differential Privacy: (D sensitive) Allow only special
queries with mathematical error guarantees

● Secure Multiparty Computation: (D1, D2 sensitive)
jointly compute Q without revealing D1, D2 to each
other

● Private Information Retrieval: (Q sensitive) Retrieve
some information from D without revealing Q

29

k-Anonymity

● Remove link between identifiers (PII) and
sensitive attribute

● Anonymization function is usually deterministic
● After anonymization, each set of identifiers in

the table must appear at least k times (=
anonymity sets have at least k elements)

(data points)

x3

x3
x3

x4

30

k-Anonymity

Quasi-identifiers

Age Weight
(kg)

Heart
disease?

Hospital
Subjects

23 86 N

15 65 Y

34 123 Y

55 95 N

32 63 Y

45 89 Y

59 112 N

61 81 Y

15 73 Y

Quasi-identifiers

Age Weight
(kg)

Heart
disease?

Hospital
Subjects

25 100 N

25 50 Y

25 100 Y

50 100 N

25 50 Y

50 100 Y

50 100 N

50 100 Y

25 50 Y

“Round Age to nearest 25, Weight to nearest 50” → k = 2
(There are three anonymity sets: Size 2, Size 3, Size 4.
 We take the minimum to be k.)

31

k-Anonymity

Quasi-identifiers

Age Weight
(kg)

Heart
disease?

Hospital
Subjects

25 100 N

25 50 Y

25 100 Y

50 100 N

25 50 Y

50 100 Y

50 100 N

50 100 Y

25 50 Y

● A flaw in k-anonymity: All
members of an anonymity set
may have the same sensitive
attribute
– e.g. If your friend is around

age 25 and weight 50kg, and
you know they're in the
table, you know they have
heart disease

● To fix this, we can also enforce
l-diversity: Every anonymity set
must have at least l different
sensitive attributes

32

k-Anonymity
● Another weakness is that completentary releases can compromise k-anonymity:

k = 4 k = 4

Quasi-
identifiers

Weight (kg) Sickness

Hospital
Subjects

30-60 A

30-60 B

30-60 C

30-60 D

30-60 E

60-150 F

60-150 G

60-150 H

60-150 I

Different rounding schemes will weaken k - if your friend has weight 56 kg, you know they have E

Quasi-
identifiers

Weight (kg) Sickness

Hospital
Subjects

25-55 A

25-55 B

25-55 C

25-55 D

55-150 E

55-150 F

55-150 G

55-150 H

55-150 I

33

k-Anonymity
● Knowing the anonymization scheme can also compromise the scheme. Suppose

Age is the only QID. If you know the anonymization scheme is the following:

– Sort patients by age, start with an anonymity set containing only the smallest
age.

– Add patients in order to the current anonymity set until desired k and l have
been achieved. Then start a new anonymity set with the next person that has
not been added.

– Repeat until all patients added; if final anonymity set is too small, merge it
with the previous completed anonymity set.

● Suppose the hospital want to achieve k = 3, l = 2. It releases two anonymity sets
{Age}:{Heart Disease} as follows:

- {0-40}: {N, Y, Y, Y, Y} {40-80}: {Y, N N}

● If you know that your friend is the youngest person in the database, then they
definitely have heart disease, otherwise the first set would not be so large!

34

Differential privacy

● Ensures privacy of data items using a
differential mathematical formulation

● Hard to understand, easy to implement
● Anonymization function is random
● Used in iOS 10 (2016)

35

Motivation: Differencing attack

● Suppose you query the mean salary of a
company M1 with 500 people, then someone
joins, and you query it again to obtain M2

● What is the salary of the person who joined?
● Similar: Query for total count of people with a

certain condition, ethnicity, etc.
● What about sequential queries?

36

Differential privacy

Two databases are neighboring if they are the same
except for one element (one person's data).

A query Q is ε-differentially private if for all
neighbouring databases D

1
 and D

2
 and for all q:

Intuitively, changing one person's data is unlikely to
change the result (distribution) of a differentially private
query => the query result does not reveal that person's
existence!

Pr (Q(D1)=q)
Pr (Q(D2)=q)

≤eε

37

Hypothesis Testing

Differential privacy is closely related to hypothesis
testing. Suppose that two hypotheses are:

We use the definition of differential privacy:

The probability of rejecting the null hypothesis H0 at
significance level a is no higher than eεa ~= a, i.e. any
test cannot be powerful

Pr (Q(D1)=q)
Pr (Q(D2)=q)

≤eε

H0: The underlying dataset is D which does contain Alice
H1: The underlying dataset is D remove {Alice}

38

Achieving differential privacy

In many cases, differential privacy is easily achieved
with Laplacian noise, with pdf defined as follows:

Consider two neighboring databases query results
Q(D1) > Q(D2), then for any k we can write k = Q(D1) +
x1 and k = Q(D2) + x2

f (x ,b)= 1
2b
exp(

−|x|
b

)

Pr (Q(D1)=k)
Pr (Q(D2)=k)

=

1
2b
exp(

−|x1|
b

)

1
2b
exp(

−|x 2|
b

)
≤exp(

|Q(D1)−Q(D2)|
b

)

39

Sensitivity

The sensitivity of a query is the maximum amount it
can change between neighboring datasets:

Therefore, Laplacian noise with mean 0 and sensitivity
b achieves ε-DP where ε = S(Q)/b

Sensitivity of common queries:
● Count (including conditional count): 1
● Summation: m where m is the largest possible

element
● Mean: m/n where m is as above and n is the smallest

possible dataset

S (Q)=max neighbours|Q(D1)−Q(D2)|

40

Intuition of differential privacy

● A small amount of noise on a query output can
be equivalent to a large amount of noise on
each individual element

● We are anonymizing a query, not a database
– It will work on any database

● If a query output is possible for a database but
not for a neighboring database, there is no DP

41

Usefulness of differential privacy

Composition theorem
● If Q1 and Q2 are differentially private at levels ε1

and ε2, (Q1(x), Q2(x)) is (ε1 + ε2)-differentially private
– This protects against sequential release

Post-processing theorem
● If Q is ε-differentially private, g(Q) is ε-

differentially private for any function g
– Any operation on the output is safe

42

Differential privacy for data aggregation

● Scenario: Each individual has (private) data, we want to
compute aggregate without compromising privacy

● DP intuition: Large noise for each person = small noise on result
● Example: Count Mean Sketch for identifying energy-hungry

websites
– Energy-hungry website is first mapped to a one-hot vector

using a hash function
– Each bit of the vector is then randomly flipped with some

probability to introduce noise
– Summing all users’ vectors still produces a number close to

the true value
● Also possible to jointly train a ML model

43

Secure Multiparty Computation

Useful for research, data analytics, collaboration, etc.

Solution Solution

Data Data

Secure
Multiparty

Computation

44

Secure Multiparty Computation

● Two parties with different data can jointly
compute a known function on the union of their
data while sharing no data at all
● e.g. “Who has more customers on this day?”

● Generally (much) slower than directly running
the algorithm
● e.g. 20 minutes on 2 cores to complete one

AES encryption of 128 bits under SMPC
● Guaranteed correctness without noise

45

Secure Multiparty Computation

● Construct a boolean circuit representing the
problem

● Suppose A is the “garbler”, and B is the
“evaluator”

● For each boolean gate, A will compute a
garbled table and share all garbled tables with
Bob

Yao’s garbled circuit

46

Secure Multiparty Computation

● For each boolean gate, A computes a garbled table:

● Generate random garbled strings I
0
, J

0
,

I
1
,

J

1
 representing input

bits being 0 or 1

● Generate random garbled strings O
0
, O

1
 representing output bits

being 0 or 1
● Encrypt the four possible outputs (random strings) of the table

using its inputs as keys, with some long public string A (e.g. 128
bits of 0)

● Randomize the order of the table, share this table

Yao’s garbled circuit

Input 1 (I) Input 2 (J) Output (O)

0 0 0

0 1 1

1 0 1

1 1 0

Encrypted Output (O)

Enc
I1, J0

(O
1
||A)

Enc
I0, J0

(O
0
||A)

Enc
I1, J1

(O
0
||A)

Enc
I0, J1

(O
1
||A)

This table is shared with Bob

47

Secure Multiparty Computation

● What does Bob do with the table?

Yao’s garbled circuit

Encrypted Output (O)

Enc
I1, J0

(O
1
||A)

Enc
I0, J0

(O
0
||A)

Enc
I1, J1

(O
0
||A)

Enc
I0, J1

(O
1
||A)

● Suppose Alice's input is I (and it is 0) and Bob's bit is J (and it is 1)

● Alice sends Bob I
0
, Bob requests J

1
 from Alice

● Using those two strings as a key, Bob tries to decrypt all 4 rows of
this table

● Only one row will succeed (Bob knows it succeeds if A shows up)

● Bob will then obtain O
1
 (without knowing the meaning of O

1
)

● This can be used in the next gate, or if it is the final output, its
meaning can be determined by asking Alice

48

Secure Multiparty Computation

● We achieve these desired properties:
● Bob can compute the gate without knowing the

real inputs
● The output is unknown to Bob until Alice reveals

what the output means
● Alice does not see the output garbled string until

Bob reveals it
● Bob's request from Alice needs to be protected:

Bob can't take both J
0
 and J

1
 (otherwise he can

cheat), but Bob can't say “I want J
1
” (otherwise

Alice knows Bob's input is 1)
● This can be done with oblivious transfer

Yao’s garbled circuit

49

A different scenario

● What if the data holder’s data is not sensitive,
but the data user’s query is sensitive?

● For example:
● Searching for a patent
● Searching for attributes of a sickness
● Searching for darknet sites

● We want to use Private Information Retrieval in
these cases

50

Private Information Retrieval

● Mechanisms to hide query from data owner
● Data returned is accurate
● Trivial solution: Let data user download entire

database, but this is not efficient
● Multi-database PIR can be information-

theoretically secure (and efficient)
● Single-database PIR is possible (see notes)

51

4-Database Information-Theoretic PIR

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

● First, represent the database as a 2-dimensional
table; Alice wants to obtain one of these elements

52

4-Database Information-Theoretic PIR

● Alice randomly picks each row and column with ½
chance (not related to the element she truly wants)
● R = {Rows 2, 3, 5}
● C = {Column 3}

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

53

4-Database Information-Theoretic PIR

● Alice creates R’ and C’ by flipping the rows in R and
columns in C corresponding to the element she truly
wants. Suppose she wants x2,2:
● Flip row 2, R’ = {Rows 3, 5}
● Flip column 2, C’ = {Columns 2, 3}

● Then she creates 4 requests to 4 servers. Each request
is an XOR of all elements in certain rows and columns:
● DB1 = XOR all elements in the intersection of R and C
● DB2 = XOR all elements in the intersection of R’ and C
● DB3 = XOR all elements in the intersection of R and C’
● DB4 = XOR all elements in the intersection of R’ and C’

54

4-Database Information-Theoretic PIR

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB1

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB2

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB3

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB4
Yellow = activated Rows, Green = activated Columns, Orange = intersection;
DB replies with XOR of all elements in orange

55

4-Database Information-Theoretic PIR

● Alice can obtain x2,2 just by XORing all 4 responses (XOR
sequence: XOR of all orange boxes in the previous slide)

● The desired element is in the intersection of exactly one of R
and R’, and exactly one of C and C’, so only once in the XOR
sequence

● No other element has the above property:
● Every other element is in either both R and R’, or both C

and C’, or neither R and R’, or neither C and C’
● In the last two cases it is not in the XOR sequence
● If it is in R and R’, it appears an even number of times in the

XOR sequence depending on if it’s in both C and C’ (4), one
of them (2), or neither of them (0) – so it will be cancelled
out with XOR

● Vice-versa for C and C’

56

4-Database Information-Theoretic PIR

● Information-theoretic privacy follows from each
row/column being randomly selected at ½ chance
from any database’s perspective
● A database cannot tell which row/column was

perturbed, if any
● This is true even if probability of any row/column

being perturbed was uneven
● Query length is O(sqrt(n))
● Communication cost is minimum possible – only

one bit
● Several other protocols exist with fewer

databases/better query length

57

Which algorithm to use?

● If downloading the entire database solves the
problem, PIR is a good solution
– i.e. data is not private

● If no noise is tolerable, k-anonymity and
differential privacy are not acceptable

● k-anonymity is used to hide QIDs
● Differential privacy can also collect data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

