
1

Module 3

Internet Security and Privacy

2

Some communication mediums are
unsafe

What can be eavesdropped upon?
● Air (for broadcast messages such as wireless)
● Copper wires (vampire tap)
● Optical fiber
● Devices (phones, computers, etc.)

Our goals:
● Confidentiality – Safeguard packets from eavesdropping
● Integrity – Prevent packet modification in transmission
● Authenticity – Prove the identity of the sender

3

Cryptography

A cryptosystem consists of:
● Key(s)
● Encryption mechanism
● Decryption mechanism

Kerckhoffs’ Principle states that:

The key(s) of a cryptosystem should be hidden,
but the mechanisms should be public.

(Why?)

4

The XOR function ⊕
Value table of XOR:

⊕ 0 1

0 0 1

1 1 0

XOR is the same as “Addition modulo 2”.
Bit-by-bit XOR of two bit strings:

(0110) (1011) = (1101) ⊕

5

Encryption and decryption

Scenario: A wants to send plaintext M to B, but doesn't want
the attacker to see M when it passes through the unsafe

medium (red).
A and B both already know some key K.

M

B

X

A

6

Encryption and decryption

1. Using the encryption mechanism Enc() and key K,
A encrypts M to a ciphertext, Enc

K
(M).

Enc
K
(M)

BA

7

Encryption and decryption

2. A sends Enc
K
(M) across the channel.

Enc
K
(M)

B

X

A

8

Encryption and decryption

3. B receives Enc
K
(M), and decrypts it using the decryption

procedure Dec() and key K.

Dec
K
(Enc

K
(M))

BA

9

Encryption and decryption

4. Dec(Enc(M)) = M; B receives the plaintext message M.

M

BA

10

Simple System: The Caesar Cipher

ATTACK “LONG A”Plaintext:

Encryption: Add K letters (K=1 here)

BUUBDL “MPOH B”Ciphertext:

Unsafe medium

Ciphertext:

Decryption: Subtract K letters (K=1 here)

Plaintext:

BUUBDL “MPOH B”

ATTACK “LONG A”

11

Simple System: The Caesar Cipher

Problems of this cryptosystem:
● Ciphertext Repetition: What if you see BUUBDL
“MPOH B” and then EFGFOE “MPOH B”?

● Key Update: For security, we should update the
key frequently. How can we do so?

● Short Key Length: How many possibilities are
there for the encryption/decryption mechanism?

● Frequency analysis: If the letter “F” appears
most frequently in ciphertexts, what does it
mean?

12

Solving the Ciphertext Repetition Problem

● The problem is that since encryption is a
deterministic function,

● Idea: Introduce a Initialization Vector (IV) into the
encryption to modify the function

● Each message under the same key must have a
different IV

● The IV is sent publicly alongside the message –
it does not matter if the attacker sees it

EncK, IV1(M) ≠ EncK, IV2(M)

EncK(M) = EncK(M)

13

Simple System: The Caesar Cipher

ATTACK “LONG A”Plaintext:

Encryption: Add K’=6 letters

GZZGIQ “RUTM G”, IV=3Ciphertext:

Unsafe medium

Ciphertext:

Decryption: Subtract K’=6 letters

Plaintext:

GZZGIQ “RUTM G”, IV=3

ATTACK “LONG A”

Both parties calculate:
K’ = K*IV

(K=2, IV=3)

14

Solving the Key Update Problem

Find a safe channel to deliver the key instead
● Hand-delivered documents, cards
● Not practical for computer systems

Public Key Encryption
● In PKE, the encryption and decryption keys are

different
● This can be used to create a safe channel on an

unsafe one
● Only send the encryption key across the channel
● More later

15

Solving the Key Length Problem
(Substitution Cipher)

A
B
C
D
E
F
G
H

A
B
C
D
E
F
G
H

... ...

Plaintext Ciphertext

How many variations are there?
26! ~= 288 => Key length is “88 bits”

16

Solving the Key Length Problem
(Substitution Cipher)

We will use
variation number

309273 to converse.

The “variation number” is the cryptosystem's key

Enc
309273

(M) Dec
309273

(M)

Sent in safe channel

17

Solving the Frequency Analysis Problem

● We cannot do this easily – all substitution ciphers
are weak to frequency analysis (cryptograms!)

● One suggested solution (Vignere ciphers): shift
different letters based on their position using a key

● e.g. key = DOG (4 15 7), then shift 1st letter by 4,
2nd by 15, 3rd by 7, 4th by 4, 5th by 15, ...

● Easily defeated! (How?)

● Broader category of cryptanalysis can defeat
almost all “homemade” cryptography

18

Symmetric Key Encryption (SKE)

● A type of cryptosystem where the two parties both
know a secret key.

● If the key is K, then the encryption and decryption
algorithms are Enc

K
() and Dec

K
().

● Enc
K
() and Dec

K
() are public, but K must be secret.

● Enc
K
(M) should not reveal either K or M.

● Both parties can encrypt and decrypt.

We will discuss three types: OTP, Stream Ciphers and
Block Ciphers

19

Scytale

What is the key in this cryptosystem?

20

Enigma machine

● The key is the rotor position
● Codebook contains an initial

position

1)Set to initial position

2)Type a new position

3)Set machine to new position

4)Type message

21

One-Time Pad

Key: Uniformly random bit sequence
10110100 01010101 10001111

Encrypt:

Plaintext: Write in bit form (e.g. “ABC”)
01000001 01000010 01000011

Bit-by-bit XOR key with plaintext

11110101 00010111 11001100Ciphertext:

Decrypt: Bit-by-bit XOR key with ciphertext

01000001 01000010 01000011

22

One-Time Pad

“Perfectly” information secure if:
● Key is truly uniformly random
● Key is only used once, ever

(Why is it perfectly secure?)

VENONA project code-breakers (1943)

One-Time Pad

Breaking a Two-Time Pad:

23

Suppose the attacker intercepts two ciphertexts:
C = M K and C’ = M’ K⊕ ⊕

The attacker applies XOR to the ciphertexts to obtain:
C C’ = M K M’ K⊕ ⊕ ⊕ ⊕

The result is the XOR of the plaintexts.
• If the attacker correctly guesses M, he can obtain M’ by

M ⊕ C C’⊕ .
• If the attacker correctly guesses only one word of M (and

its position), he can still obtain some letters in M’ (at the
same position) – he can drag this guess around and
observe the result, known as crib-dragging.

= M M’⊕

24

Stream cipher

● Key is truly uniformly random
● Seed and IV are only used once, ever

● Keystream is pseudorandom

Generates keystream of any length
from random seed

Currently used: A5/1 (cell phones), Salsa20 (TLS)

Enc
seed, IV

(M) = Keystreamseed, IV M⊕

25

Stream cipher (Enc/Dec)

 Plaintext

Keystream
Seed

Ciphertext

Generate

⊕ (bit-by-bit XOR)

=

IV

26

Salsa20 example

“expa” Seed Seed Seed

Seed “nd 3” IV IV

Position Position “2-by” Seed

Seed Seed Seed “te k”

Place seed, IV, and position in a
16-by-16 matrix
Each entry is 4 bytes

Alternatively, scramble each
row and scramble each
column (10 times each)

Output all bits as keystream

27

Block cipher

Difference from stream ciphers:
● There is a fixed block size (128 bits for AES)
● Plaintext is divided into blocks of this size
● We encrypt each block to produce ciphertext
● The “same” key is used for each block

We must change something,
or we run into the ciphertext repetition problem!

28

Block cipher
We use the mode to avoid the ciphertext
repetition problem between blocks:
● Electronic codebook (ECB):

All keys are the same (no defense against
ciphertext repetition)

● Cipher Block Chaining (CBC):

Each plaintext block X is XOR'd with
Ciphertext block (X-1), then encrypted

Ciphertext block 0 is the IV
● Counter (CTR):

Each plaintext block X is XOR’d with a
“keyblock” that is generated by an
encryption of counter X with an IV

29

CBC mode (AES):

E E E E

Ciphertext
Block 1

Ciphertext
Block 2

Ciphertext
Block 3

Ciphertext
Block 4

 IV

Plaintext
Block 1

Plaintext
Block 2

Plaintext
Block 3

Plaintext
Block 4

E is the 128-bit encryption mechanism

⊕ ⊕ ⊕ ⊕

Key Key Key Key

30

Block cipher

Plaintext ECB mode

ECB mode is insecure!

31

Block cipher
● Includes DES (56-bit), AES (128-bit)
● DES was shown to be too weak in 1998
● AES is the current standard; widely used
● Stream ciphers are generally faster (and

keystream can be generated ahead of
time)

“Deep crack” DES cracker

32

Public Key Encryption (PKE)

In SKE, locking and opening require the same key

Ciphertext

Encryption Decryption

Plaintext Plaintext

What if we want them to require different keys?

Ciphertext

Encryption Decryption

Plaintext Plaintext

This is known as Public Key Encryption

33

Public Key Encryption (PKE)

Has two keys for two procedures:

Public key is used for encryption

Private key is used for decryption

Alice generates both keys.

(They are mathematically related.)

Then, Alice publishes her public key:

Anyone can encrypt

Only Alice can decrypt

Examples: RSA, ElGamal, ECC

Anyone can write a message that only Alice can read.

34

RSA

● First PKE (1977), widely used now in encryption
● Requires much longer keys (2048/4096 bits)
● Less efficient than SKE
● No “perfect security”; can be broken by

quantum computers

35

PKE and SKE

PKE SKE

Key setup Share public key

Key Two: public/private One: secret

Need safe channel

Efficiency
Costly to

encrypt/decrypt Cheap

Encrypt Anyone Both participants

Decrypt Both participantsOnly key generator

We can combine PKE and SKE to cover their weaknesses

36

Key Exchange
(using PKE)

1. Alice generates a public/private key pair

2. Alice shares the public encryption key

3. Bob generates a secret key,
encrypts it with PKE , and sends it to Alice

4. Alice decrypts the secret key,
and uses it for SKE from now on

What if the private key is leaked?
In practice, the public/private key pair is

short-lived to guranatee forward secrecy

37

Key Establishment
(using Diffie-Hellman)

1. Alice and Bob use some g and prime p,
where g generates integers modulo p

2. Alice generates and sends gA mod p

3. Bob generates and sends gB mod p

4. Alice and Bob compute secret key gAB mod p
Alice: (gB mod p)A = gAB mod p
Bob: (gA mod p)B = gAB mod p

38

Other cryptographic tools

We may also want integrity and authenticity
● Confidentiality: The message is secret
● Integrity: The message is correct
● Authenticity: The sender/receiver's identity is

correct

For this, we need other tools:
● Cryptographic hash
● Message Authentication Code (MAC)
● Digital signature

39

Cryptographic Hash

Cryptographic hashes are irreversible one-
way functions:

MESSAGE b194 d920
Hash

Properties:
● Output is small, fixed size
● Different inputs may give same output
● Function is publicly known
Examples: MD5 (insecure!), SHA1, SHA2, SHA3

40

Cryptographic Hash

Cryptograhic hashes need to be difficult for
the attacker to reverse or manipulate:

MESSAGE b194 d920
Hash

MESSAGF e460 d5cf
Hash

2) A small input change should produce an
unpredictable output change

???? 5e88 4898
Hash

1) Given the output, it is hard to find an input
hashing to that output

41

Cryptographic Hash
Password Storage

(U, P)

Create
account.

(username, password)

(U, h(P))

Password
database

P is never stored directly or
encrypted because the
password database can be
stolen (even the key!)

Instead, it is hashed for storage

What if two users have the same
password?

42

Cryptographic Hash
Password Storage

Attacker can precompute a hash table:

Guess password Hash

123456 h(123456)
abc h(abc)
... ...

When hashed passwords are stolen, attacker
simply has to do a matching exercise to “invert” the hash!

This is exactly like the ciphertext repetition problem

43

Cryptographic Hash
Password Storage

(U, P)

Create
account.

(username, password)

(U, h(P +S), S)

Password
databaseAdd a random Salt to the password

44

Cryptographic Hash
Verifying Integrity

M, h(M)

verify h(M)

I would like to
download file M.

Sure, here
you go.

Good against unintentional errors, random errors
What about a malicious MITM attacker?

45

Message Authentication Code

A MAC is attached to messages for authentication:
● The two parties both need to have the secret key

(like SKE)
● An attacker cannot “forge” a MAC
● Authenticates the message
● Can be built from a hash (this is called HMAC):

h(K||M)

46

Message Authentication Code

Alice sends M, h(K||M) to Bob

Verification: Bob, using his key, verifies h(K||M) is
correct.

Resistance against MITM: Mallory, who does not
have the key, cannot produce the HMAC.
Specifically, if Mallory changes M to M’, he cannot
also replace h(K||M) with h(K||M’). If he attempts to
change any part of the message, Bob’s verification
will fail.

47

Signatures
What if we reversed the roles of and ?

Private signing key: signs the message

Public verification key: verifies the message

“Encrypting” would be limited but everyone could “decrypt”

Signing verify

Achieves authentication if you know the correct
public verification key

In practice, sign/verify keys are long-lasting while
encrypt/decrypt keys are short-lived

48

Blockchain
Problem: We want a distributed transaction ledger so that
no single entity has control over the ledger
● Global transaction ledger:

● Contains all transactions between all participants
● Distributed to all participants (=> open)
● Can be sent by anyone, and therefore requires some

verifiability
● Solution: Use cryptographic techniques so that

participants can verify the ledger

49

Global Transaction Ledger

Sender Receiver Bitcoin
amount

Alice Bob 0.31

Carol Bob 1.21

Alice Bob 0.4

Bob Alice 0.532

Carol Bob 0.01

Bob Carol 0.01

...

... ... …

● Everyone agrees on
the same ledger
– Update each other

on new transactions
● Divided into blocks, 1

block every 10 minutes
● Can someone lie?
● e.g. “Alice: Block 1 has

no transactions!”

Block 1

Block 2

Block 4

50

Global Transaction Ledger
Three types of threats against the ledger’s integrity:
Add: People refuse to add a real transaction to the ledger
Modify: Someone modifies a transaction in the ledger
● This is easiest to fix: Simply have the participants sign all

transactions, and include the signature in the ledger
Delete: Someone removes a transaction from the ledger
● To prevent those, we use a proof of work to safeguard

blocks
Two types of participants in a blockchain system:
● Users: Signs their transactions and announces them
● Miners: Helps add the transactions to the ledger by

generating the proof of work (technically, miners can also
be users)

51

Blockchain

B
1

B
2

B
3

B
4

B
2
 = <T

2
, h(B

1
), P

2
(h(B

1
))>

B
3
 = <T

3
, h(B

2
), P

3
(h(B2))>

B
4
 = <T

4
, h(B

3
), P

4
(h(B3))>

Transactions in
this block

Proof of work,
based on hash and
very hard to
compute

Attacker claim: actually, B1 should be B1’
● The attacker needs to change B1, which changes B2, which...
● The attacker needs to generate 3 new proofs of work, because

the network accepts the longest chain
● Trying to generate those essentially triggers a race: other miners

are generating P5, P6, P7...

52

Proof of Work

● Challenge: Given C, how can we find P such that

● Cryptographic hash: Best way = Brute force (one
success per 232 hashes on average)

● C is the Content and P is the Proof of Work: If Alice
sends C to Miner and Miner sends P back to Alice,
Miner has “proven” that they did the work of many
hashes

h(C||P) ends with 32 zero bits?

53

You can verify it
with this public
verification key.

Public Key Infrastructure

How can you trust Alice?

Hello! I am Alice.
Here is my
signature!

Sign (h(M))

54

Public Key Infrastructure

We will examine PKI in three technologies:

● SSH tunneling

● PGP

● SSL/TLS

Delivering the right public verification key to users

55

SSH tunneling

TOFU (Trust On First Use):
● When connecting for the first time, the

server shows the public key
● You are asked if you trust the public

key (yes/no)
● If “yes”, you will not be asked again

unless the key changes
● If “no”, you will be disconnected

Used for connecting to remote machine

56

SSH tunneling

57

PGP
Used in e-mails

Pretty Good Privacy
● Developed in 1991
● Needs setup
● Used by some professionals, privacy-

sensitive circles

58

PGP

Web of Trust:
● Trust is transitive
● Alice can trust Bob directly (like TOFU)
● Alice can trust Carol indirectly – if Alice

trusts Bob, and Bob trusts Carol
● Bob signs Carol's key, and Alice verifies

Bob's signature

Used in e-mails

59

SSL/TLS

● Most widely used crypto-technology
● First appeared in Netscape for e-commerce
● Used by default in (increasingly) many websites
● Uses almost all of the tools in this module
● Versions: SSL1, SSL2, SSL3, TLS1.0, TLS1.1,

TLS1.2, TLS1.3
● Current trend: removing bad encryption

Used in HTTP

60

SSL/TLS

Certificate system:
● By default, browsers will trust a set of

Ceritifcate Authorities (CA)
● CA can sign any website's public key;

the CA's signature is called a certificate
● The website presents its certificate

when you connect to it
● Certificates can also be transitive

61

SSL/TLS

Web server’s public encryption key
Web server’s private decryption key

Web server’s public verification key
Web server’s private signature key

Root CA’s public verification key
Root CA’s private signature key

CA

CA

Secret key negotiated between client and web server

Key:
A basic connection uses most of this module's tools.

62

SSL/TLS
CA CA

Client Server CA

3. Sign ()
CA

6. Sign (), , Sign () ,
CA

4. Access

7. Verify CA
signature

2. Verify web
ownership

9. Enc ()
8. Generate

1.

5. Generate

10. Decrypt to
obtain

(This is TLS 1.2 RSA Key
Exchange. For TLS 1.3
Diffie-Hellman Key
Exchange, the server uses
its signing key to ensure it
was not tampered with.)

63

SSL/TLS
1. Server sends its public verification key to the root CA.
2. Root CA checks that person really owns the web server.
3. Root CA signs the web server’s public verification key and sends it
back (the cert).
(After some time)
4. The client accesses the web server.
5. Server generates an ephemeral PKE key pair.
6. Server sends the cert to client, along with both public keys and a
signed version of the public encryption key to avoid tampering.
7. Client checks signature on cert to verify the server’s public
verification key, then uses that to verify the server’s public encryption
key.
8. Client generates secret key.
9. Client encrypts secret key with server’s public encryption key and
sends it to server.
10. Server decrypts to obtain secret key.

From this point onward all communication will use that secret key (most
likely 128-bit AES CBC with SHA-256 for HMAC).

64

Attacks on Cryptosystems

Cryptanalysis
● Find mathematical weaknesses in cryptography
● For example:

● DES key length is too short
● RC4 does not have enough initial rounds
● MD5, SHA-1 are vulnerable to a “collision attack”

● This is a problem for hash-signatures

65

Attacks on Cryptosystems

Root CA compromise:
● DigiNotar, dutch root CA (2011)

● Issued fake certs for google.com
● Breach was hidden
● Web browsers removed DigiNotar as root CA

● Comodo (2011)
● Issued fake certs for google, yahoo, etc.
● Certificates were immediately revoked

● Kazakhstan’s government issues all certificates

(i.e. can read/intercept all HTTPS)

66

Attacks on Cryptosystems (WEP)

WEP: Uses a stream cipher (RC4)

A number of critical weaknesses

1) Short IV:
● Original design called for 24-bit IV
● IV is generated randomly for each message
● How long does it take to find two messages

with the same key and IV?

67

Attacks on Cryptosystems (WEP)

2) RC4 issues
● Fluhrer, Martin, and Shamir discovered issues in

RC4’s initial randomization (key scheduling)
● Given a byte of the keystream, and if the IV

satisfies a certain format, you can derive part of the
key

● How can you get a byte of the keystream?

68

Attacks on Cryptosystems (WEP)

3) Bad integrity check:
● Integrity check is a checksum...
● You can inject a message into the channel

● e.g. tricks the user into thinking the message
came from the router

● Authentication is done by asking the user to
encrypt a message

● How do you generate a plausible ciphertext for
a given plaintext?

69

Recap

SKE is efficient and hard to break cryptographically

but it needs a shared key

can be used to share the SKE keyPKE

but text and public key are not authenticated

can authenticate textMAC

but it needs a shared key

can authenticate public keyPKI

but they each have their own problems
TOFU
Web of Trust
PKI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	One-Time Pad_clipboard0
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

