
1

Module 2

Software Security

2

Software errors can kill a project

Mars Polar Lander (1999) – crashed on Mars

Sensors were programmed incorrectly and shut off engine;
not caught in testing

3

Flaws

Malicious Non-malicious

UnintentionalIntentional

e.g. Coding errors

e.g. Injected errors e.g. Lack of
security features

4

Unintentional Flaws

We will discuss two types of unintentional flaws:

Local application flaws
● Buffer overread, buffer overflow, TOCTTOU

Web application flaws
● XSS, XSRF, SQL Injection

5

Buffer overread

Your own memory may look like this:

wake up; have breakfast; need to
buy milk; turn off the lights; go to
class; that man has a strange shirt;
fall asleep; wake up

A web server’s memory may look like this:

Bob requests main page; Atta wants
reply “Cat”; Li sets password to
“sup3rsekr1t”; Kate wants image
“derpy_cat”; Poe sets secret key; ...

6

Buffer overread

Cat

Please reply “Cat”
(3 letters).

Cat”;
Please reply “Cat”
(5 letters).

Bob requests main page; Atta wants
reply “Cat”; Li sets password to
“sup3rsekr1t”; Kate wants image
“derpy_cat”; Poe sets secret key; ...

Memory

7

Buffer overread

Cat”; Li sets password to
“sup3rsekr1t”; Kate wants

image “derpy_cat”; Poe
sets secret key; ...

Bob requests main page; Atta wants
reply “Cat”; Li sets password to
“sup3rsekr1t”; Kate wants image
“derpy_cat”; Poe sets secret key; ...

Memory

Please reply “Cat”
(100 letters).

8

Buffer overread

Heartbleed (2015)

memcpy(bp, pl, payload);
Points to an array

Supposed to be the
size of that array, but
user declares this

Returned to client

9

Buffer overflow

What if you could write directly into memory?

Also “stack smashing”, “buffer overrun”

void input_username(...) {
char username[16];
printf(“Enter username:”);
gets(username);
...

}

strcpy, gets, fgets, etc. can write more data than the target size

10

Buffer overflow
Memory of C program process:

Stack

Heap

Stack and Heap grow during runtime

Data

Text

Function stacks

Dynamic memory, e.g. malloc

Static, global variables

Program code

11

...

Buffer overflow
A simplified function stack

local var. return addr. parameters local var. return addr. parameters

f2 (called by f1) f1

top of stack
Stack grows this way

Return address points to f1's code in text segment
(“after executing f2, return to f1”)

12

Buffer overflow
A simplified function stack

username[16] return addr. Parameters

[] [7FA2]

void input_username(...) {
char username[16];
printf(“Enter username:”);
gets(username);
...

}

...

gets does not check bounds!

(return address normally points to text segment, not stack)

13

Buffer overflow
A simplified function stack

username[16] return addr. Parameters

[AAAAAAAAAAAAAAAA] [4141]

void input_username(...) {
char username[16];
printf(“Enter username:”);
gets(username);
...

}

...

If user types 22 A's...

Upon function termination, return to “AAAA” (segfault)
But the attacker can be smarter

[AAAA]

14

Buffer overflow
A simplified function stack

username[16] return addr. Parameters

[AAAAAAAAAAAAAAAA]

...

This will cause the shell code to be executed!

another_buffer
[execute evil code;] Malicious shell code can

be written in the stack too

[E4FF]

(shell code is assembly code
that spawns a shell)

15

Buffer overflow
Example

username[40] return addr.

[<shellcode>] [04FF]

int mycpy(char* username) {
char buffer[20];
strcpy(buffer, username);
return 0;}

void main(int argc, char** argv) {
char username[100];
fgets(username, 100, stdin);
mycpy(username);}

return addr. Params

[05A0]

Params

Addr: FCD0 Addr: FCF8 Addr: FCFA

buffer[20]

BEFORE strcpy:

Points to code
of main

username[40] return addr.

[<shellcode>] [04FF]

return addr. Params

[FCD0]

Paramsbuffer[20]

AFTER strcpy:

[<shellcode>]

Attacker inputs
username:

<shellcode>FCD0

breakpoint

now points
here

mycpy main

16

Buffer overflow
Defenses

● Never execute code on stack
● W^X (write XOR execute), NX, or DEP

● Randomize stack
● Address Space Layout Randomization

● Detect overflow
● Canaries

● Don't use C

17

Buffer overflow
Return-Oriented Programming

How to defeat W^X

subroutine 1 subroutine 2 subroutine 3
subroutines

in libc

input_bfr[500] return addr. char[] str

[AAAAAAAAAAAAAAAAAA] [AB00] [AAAA]

18

Buffer overflow

Majority of known software flaws are buffer overflows
● Very common (why?)
● Very powerful – gives root access
● Not much harder to exploit than to detect

19

Integer overflow

● Integers are often stored in 32-bit
● Sometimes 16-bit with specific systems

● When exceeding the maximum, the result is an error
● Often, wrapping back to the lowest/negative number

● It is surprisingly easy to exceed the maximum!
● e.g. What is 2^31 milliseconds?
● e.g. Any multipliers that can be applied

20

Format string vulnerability

● The following prints today's lucky number:

● What about the following?

● What if the user has control over this string?

printf(“Today's lucky number is %d”, 18);

printf(“Today's lucky number is %d”);

char uname[250];
fgets(uname, 250, stdin);
printf(“Your username is: ”);
printf(uname);

local var. return addr. parameters local var. return addr. parameters

printf (called by main) main

printf starts reading here instead!

21

Format string vulnerability

local var. return addr. local var. return addr. parameters

printf main

username = “%d %d %d”; printf(username);

(parameters)

Prints out the next 3x4-bytes as integers

local var. return addr. local var. return addr. parameters

printf main

username = “%18$d”; printf(username);

(parameters)

Prints out bytes 72 to 76 after the end of printf return addr

22

Format string vulnerability

● %n: Counts the number of bytes written so far,
writes it to the given variable

● What if len was not provided?
● If the user controls a format string, they can put a

clever combination of %d and %n there to write
whatever they want to an address!

int len;
printf(“This string length is%n...? ”, &len);
printf(“%d”, len);

> This string length is...? 21

23

TOCTTOU

● “Time of Check To Time of Use”

● Check: Should the user have privilege?

● Access control, check ownership, etc.

● Use: Do something for the privileged user

● Read file, write to file, change permissions

What if something changes?

A type of “race condition”

24

TOCTTOU
passwd example (pseudocode)

> passwd new_password

passwd code:

check_access(password_file, user);

update_file(password_file, new_password);

What if you can change password_file in-between?

I want to change root password, but I am not root

25

TOCTTOU
passwd example (pseudocode)

attacker: set password_file to point to user_password

attacker: set password_file to point to root_password

> passwd new_password

passwd code:

check_access(password_file, user);

update_file(password_file, new_password);

(Attacker actions are on the OS, not part of the code)

26

TOCTTOU

Attacker can increase chance of success by:
● Opening a file in a deep directory
● Opening a file in a remote network location
● Simply timing the attack well or keep retrying

Prevention:
● Locking the object under use
● Checking something that is immutable

27

Cross-site Scripting (XSS)

If this works, that page has an XSS!

Enter the following in your profile/biography:

</script> <script>
Please log in again!

 <input type="text" placeholder="Enter
Username" name="uname" required>
 <input type="password" placeholder="Enter
Password" name="psw" required>
 <button type="submit">Login</button>
 </script>

28

Cross-site Scripting (XSS)
XSS vulnerabilities occur when users can
write code onto a web page

● Persistent XSS vulnerability
● User changes content of a page persistently
● e.g. social media profile page

● Reflected XSS vulnerability
● Malicious link that executes code as if it was

part of the page’s content
● Person who clicks link doesn’t know it’s evil

● e.g. Steal cookies, make fake login window,
send messages to other users

www.bad-bank.com/login.php?username=<script>dobadthings</script>

29

Cross-site Request Forgery (XSRF)

www.bad-bank.com/give_money.php?amount=10000&target=attacker

If the victim is currently logged into bad-bank.com:

In XSRF, a malicious forged link causes the user to
make a request that harms herself

Example:

Difference with reflected XSS:
● XSRF is itself a legitimate request for the website,

though the website should not allow such a link to
work

● Reflected XSS puts arbitrary code in the link,
running a script that can be completely unrelated
to the website

30

SQL injection

s = “SELECT uid FROM utable WHERE username =‘” + input_uname +
 “’AND password =’” + input_password + “’”

User inputs input_uname as:

Poor SQL code with parsing vulnerability:

‘ OR ‘1’ = ‘1'--

If uid is non-empty, then login is successful.

31

SQL injection

32

Parsing vulnerabilties

Characters and numbers may be parsed incorrectly:
● rlogin -l -froot attack allowed remote login as root

● Target computer receives “login -f root”
● Canonicalization: Many ways to represent the same

string; attacker chooses a way to avoid
blocking/detection. Examples:
● http://2130706433/
● A trojan downloading a file with .exe%20 to avoid

exe files being blocked
● System allows access to /data/user/taowang, so you

access data/user/taowang/../../../system/

http://2130706433/

33

Classifying malware

● Malware consists of a spreading mechanism
and a payload

● We can classify by method of spread
● AKA infection vector
● How does it get on your computer?

● Or by effect on system (payload)
● What does it do to your computer?

34

Trojan

35

Trojan

“Given a choice between dancing pigs and security,
users will pick dancing pigs every time.”

–Gary McGraw and Edward Felten, “Securing Java”

36

People often represent the weakest link
in the security chain.

Trojan
A trojan is a piece of malware that spreads by
tricking the user into activating/clicking it
● Packaged with useful software
● Looks like useful software (e.g. Android re-

packaging)
● Scareware
● Spear phishing

— Bruce Schneier

37

Trojan

ILOVEYOU (2000, Windows):

● Malware in e-mail attachment:

“LOVE-LETTER-FOR-YOU.txt.vbs”
● Destroys files on target system through replication
● Reads mailing list, sends files to them
● Downloads another trojan “WIN-BUGSFIX.EXE”
● Very easy to reprogram

38

Trojan

Conficker Worm’s interface illusion

39

Trojan

MobiDash’s interface illusion

40

Removable media

ByteBandit (1987, Amiga):

● Spreads with an infected floppy disk
● Resides in memory, even after reboot
● Infects all inserted floppy disks
● After causing 6 infections, black screen!

41

Network
Malware that spreads through packets requires no user action

● Infects network-facing background programs
(daemons) to spread

● Can be very fast – infection and spread can be
automatic, exponential

● Malware spreading explosively can cause
worldwide internet outage, and are called “worms”

42

Network
Slammer Worm (2003, Microsoft SQL Server):

● Exploits SQL Server buffer overflow using a packet

● Patch had existed after Blackhat warning

● Generate random addresses, sends itself by UDP

● Infection doubled every 8.5 seconds, reached 90% of
all vulnerable systems in 10 minutes

● “Warhol worm” - Andy Warhol “In the future, everyone
will be world-famous for 15 minutes”

● No payload

43

Network

44

Network
Blaster Worm (2003, Windows):

● Exploits RPC buffer overflow

● Payload: DDoS windows update site

● Earlier warnings, patches were not installed

● (Unintentionally) shut down computers

● Welchia is a “helpful” worm that removes Blaster
and force-installs patches

45

Planted malware

Installed intentionally by an attacker who has
(temporary) control over the system:
● Employee
● Espionage
● From other malware

Sometimes the payload is a logic bomb:
Malicious code set off by specific conditions
● After some amount of time
● If an employee is fired

46

Classifying malware

● Malware consists of a spreading mechanism
and a payload

● We can classify by method of spread
● AKA infection vector
● How does it get on your computer?

● Or by effect on system (payload)
● What does it do to your computer?

47

Botnet

Flood canada.ca!

Computers owned by
different users

C&C System

48

Botnet

● Consists of three components:
● A Master
● A large number of infected devices (“bots”)
● A Command and Control structure

● Useful for:
● Hiding attack source/identity
● Sybil attacks
● Malware spreading
● Spam

49

Backdoors

● Allows unexpected access to system
● Could be created on system because:

● Left for testing (intentional non-malicious flaw)
● Installed by malware
● Demanded by law

50

Rootkits

● A rootkit is a piece of malware for maintaining
command & control over a target system (root)

● It changes the behavior of system functionalities
to hide itself/some other malware

● Hard to remove
● User rootkits can change files, programs,

libraries, etc.
● Kernel rootkits can change system calls

51

Rootkits

Sony XCP (2005)

● Rootkit by Sony
● Garbles write-output of XCP disk
● Hides all files and folders starting with “sys”
● Eventually, Sony released an uninstaller due to

pressure

52

Zip bombs, compiler bombs

● Destructive payloads usually used in the context
of a trojan

● Zip bombs: Unzipping the bomb creates a very
large file

● Compiler bombs: Compiling the bomb creates a
very large file

● Besides destruction, can be used to break certain
scans

53

Spyware

54

Spyware

● Secretly collects data about the user

Pegasus (2016):

● Spyware for iOS and Android

● Developed by software company NSO Group

● Reads text messages, traces the phone, can
enable microphone and camera, etc.

● Uses three zero-days, including Use After Free

55

Trackers (Spyware)

● Cookies store information about you
● Third-party cookies allow your actions on site A to be

collected and sent to site B (blocked on some
browsers)

● Web beacons on websites make a request for you to
a third-party (ad) server, which can also
automatically send your cookies for that server

● Beacons in multiple sites often link to the same ad
server

56

Keylogging

Several kinds of keyloggers:
● Application-specific keyloggers
● Software keyloggers
● Hardware keyloggers
Each can be installed covertly

Some keylogging malware steals your credentials
(e.g. “bankers”)

57

Ransomware

CryptoLocker: Estimated $3 million extorted

58

Ransomware

● General technique: encrypt disk, then demand
ransom to decrypt it

● Disk is encrypted using public key, private key is on
attacker’s own server

● Attached storage media will also be encrypted
● Little recourse once files are encrypted
● A number of attacks fail to release keys

59

Stealth techniques

To avoid detection:

● Polymorphic code

● Hide in memory, disguise file patterns

● Interrupt scanning techniques

Code polymorphism

60

Advanced Persistent Threats

● Combination of multiple infection vectors and
spreading strategies

● Focused, long-duration attack
● Achieves political/industiral goal

61

Advanced Persistent Threats

● Spreads by network and USB
● Uses four zero-day attacks
● Does nothing in almost any machine
● But it wrecks a specific type of

Iranian nuclear reactor centrifuge controller
● Speculated to be government-sponsored

Stuxnet (2011)

62

Advanced Persistent Threats

63

Advanced Persistent Threats

Flame (2012)

● Spyware: records keystrokes, camera, screen,
sends to remote server

● Behavior determined by your antivirus
● Uses a fake certificate obtained by attacking a

Microsoft server's weak cryptorgaphy
● Very large (20MB)
● Attempted to erase itself when discovered

64

Covert Channels

Covert channels are resources (not intended for
communication) that are used by an attacker to
communicate information in a monitored environment
without alerting the victim
● To retrieve stolen data
● To receive commands
● To update malware

Examples: TCP initial sequence number, size of packets,

timing, port knocking

65

Side Channels

Side channels leak information in unintended ways
● Power analysis
● Timing analysis
● EM wave analysis
● Acoustic analysis

Defenses: air gap, Faraday cage, etc.

66

Side Channels

Spectre (2017)

Side channel attack on microprocessors

1) CPU branch prediction can be trained by attacker-
controlled data

2) A branch mis-prediction can read process memory and
affect processor cache

3) Processor cache contents can be exposed using timing
attacks

=> This can potentially leak any process memory

67

Side Channels

Spectre (2017)

Example (Kocher et al.):

1 if (x < array1_size)

2 y = array2[array1[x] * 4096];

● The attacker can make the CPU “expect” that the check in
line 1 will pass, and predictively execute line 2

● If the CPU runs line 2 on x larger than array1_size, it is a
buffer overread

● This affects the processor cache and what it reads can be
guessed with a timing attack

68

Defensive strategy

How do we defend against software flaws?
● Blocking access from attackers: Scanning, ...
● Writing good code: code review, change

management, testing
● Fixing bad code: code analysis, patching

69

Malware scanning
● Signature-based:

● Scans for virus “signatures”
● Scans memory, registry, program code

● Behavior-based (“heuristics”):
● Detects system irregularities
● May have false positives

● Sandboxing
● Run potentially malicious code in

controlled environment
● Often used with honeypots

70

Code analysis

● Static code analysis

● Dynamic code analysis

● Formal verification

Examine code for vulnerabilities

Look for vulnerabilities/bugs in code

Test code by running it on input

Prove that code follows a specification

71

Code analysis
sel4: Formally verified OS

● Contains 8,700 lines of C, 600 lines of
assembly

● Proof of correctness: 200,000 lines of code
● Can have “unintended features”
● Bugs that are not in the specification could still

exist (e.g. timing attacks)

72

Software testing

● Unit testing (test small units one at a time)

● Integration testing (test integration of units)

● Fuzz testing (test with random input)

● Black-box testing (test unknown system)

● White-box testing (test known system)

● Regression testing (test if update causes bugs)

73

Code review

● Formal inspection
● Programmer explains code to panel

● Pair programming
● Programmer explains code to an observer

● Rubber duck programming
● Programmer explains code to themselves

● Change management
● System for recording and managing code changes

74

Patching

Having a good error message helps!

75

Patching

Several unresolved problems:
● Vulnerable users don’t install patches
● Patches cause further issues
● Patches don’t resolve underlying issues

Microsoft’s “Patch Tuesday” forces patches to be
installed and makes it easier for system
administrators to fix issues

76

Summary

Unintentional flaws
● Buffer overread, buffer overflow, TOCTTOU
● XSS, XSRF
● Exploited by malware: viruses, worms, trojans

Intentional malicious flaws
● Planted malware, rootkits

Intentional non-malicious flaws
● Covert channels, side channels

Defensive strategy
● Scanning, code analysis, testing, review, patching

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

