
Lecture notes: Data Privacy

Data owners (such as businesses and governmental organizations) may want to share their data to
allow data analysis. As a motivating example, hospitals may want to enable medical research by
sharing clinical data. Sharing such data may lead to a serious compromise of privacy when the data
contains private information. We consider four ways to allow a data user to perform some query
Q on the data owner’s database D while protecting privacy, suitable for four somewhat different
scenarios:

� k-anonymity: The data owner publishes a distorted version of D, denoted as Dk. Then, the
data user can perform any query on Q(Dk).

� Differential privacy: The data owner does not publish any data. Instead, the data owner
only accepts queries Q which satisfy differential privacy from the data user.

� Secure multi-party computation: There are two data owners owning D1 and D2, and
they want to jointly compute Q(D1, D2) without revealing either.

� Private information retrieval: The queryQ is private, and the data owner needs to support
Q(D) without knowing what Q is.

Any material in here that was not covered by the lectures/slides is not in the exam and should
be considered bonus material for your knowledge.

k-anonymity

k-anonymity allows the data publisher to distort their data D into Dk and publish it. Let us
visualize the data D as a table, where each row represents one person. There are three types of
columns in the table:

� Identifiers: These columns strictly identify the person and provide no value during analysis.
For example, they may be the name or ID of the person. The identifiers are never published.

� Quasi-identifiers (QIDs): These columns do not directly identify the person and they are
valuable during analysis. For example, they may include age, sex, height, and weight. They
need to be published for analysis, but they may still reveal the person’s identity indirectly.
Therefore, they need to be distorted.

� Sensitive attributes: These columns are sensitive and we do not want the data user to
figure out the real identity of people with these sensitive attributes. They are also published,
but they are not distorted.

We say that two people are in the same anonymity set if they have the same QIDs. It is not
necessary for them to have the same sensitive attributes or identifiers. It is not likely for two people
to have the same QIDs in the original data set D. Therefore, we distort D into Dk so that people
would be put into the same anonymity set.

We say that Dk satisfies k-anonymity if every anonymity set consists of at least k elements.
Table 1 shows an example of a hospital’s data set D. The Name is an identifier (so it is never

published), Age and Height are QIDs, and Sickness is the sensitive attribute. Table 2 shows a
distorted version Dk that is ready to be published. The rows in the same anonymity set in Table 2
are marked with the same color (red, green, or blue). We can see that the three anonymity sets
have size 3, 4, and 4 respectively. Therefore, Dk satisfies 3-anonymity.

1

Table 1: Table of patient sicknesses held by hospital; will not be published.

Name Age Height (cm) Sickness

Alice 13 145 Hepatitis A
Bob 15 161 Hepatitis A

Carol 21 165 No sickness
Dave 33 177 Chronic coughing
Eve 33 160 Hepatitis A

Frank 35 172 Hepatitis B
Grace 41 180 Flu
Henry 43 156 Hepatitis A

Ivy 45 163 Flu
James 45 178 Flu

Table 2: Published table of patient sicknesses held by hospital satisfying 3-anonymity.

Age Height (cm) Sickness

20 150 Hepatitis A
20 150 Hepatitis A
20 150 No sickness
40 200 Chronic coughing
40 150 Hepatitis A
40 150 Hepatitis B
40 200 Flu
40 150 Hepatitis A
40 150 Flu
40 200 Flu

Table 3: Data error of the above table (same as “change” in Assignment 3).

Data error

|20− 13|+ |150− 145| = 12
|20− 15|+ |150− 161| = 16
|20− 21|+ |150− 165| = 16
|40− 33|+ |200− 177| = 30
|40− 33|+ |150− 160| = 17
|40− 35|+ |150− 172| = 27
|40− 41|+ |200− 180| = 21
|40− 43|+ |150− 156| = 9
|40− 45|+ |150− 163| = 18
|40− 45|+ |200− 178| = 27

Sum: = 193

2

How effective is k-anonymity?

We can measure the effectiveness of the data distortion procedure in k-anonymity by the data
error. Various definitions of data error exist; we use the following in Assignment 3. If a certain
QID (say, Age) of person A is I in the original data D, and it is distorted to become I ′ in Dk,
we say that the data error of this element is |I ′ − I|. Then, the data error of the data distortion
procedure is simply the sum of the data error for all QIDs and all people in the table. Table 3
shows the calculation of data error for Table 2.

Problems with k-anonymity

One problem with k-anonymity is that it may still be possible to deduce the sensitive attribute of
someone if every person in their anonymity set has the same sensitive attribute. This is resolved
by another property known as `-diversity. A published data set is said to satisfy `-diversity if every
anonymity set has at least ` different sensitive attributes in it. Table 2 satisfies 2-diversity.

Another issue is that k-anonymity can be compromised if two related distorted data sets are
published. The data user can correlate the entries in the data sets to deduce private information.
Even if the two distorted data sets each individually achieve k-anonymity for any value of k, if we
consider the two distorted data sets as a whole set, it is possible it cannot achieve any k-anonymity
with k > 1.

Notably, achieving minimum data error for k-anonymity is known to be an NP-complete problem
in general, when either the number of dimensions (QID columns) or the number of clusters required
is not fixed. This is true for any Lp-norm (the above definition uses the L1-norm). This is known
as the optimal k-means clustering problem.

This is not true if k and the number of dimensions is fixed. For example, if there is only one
QID, a O(n2) time algorithm, where n is the number of rows, exists for any k using dynamic
programming as follows. Suppose the QIDs are arranged in ascending order in D, and denote Di...j

as all the elements between Di and Dj, inclusive. (The data set is D1...n. Let the final anonymity
set be Dm...n, where n−m ≥ k. The optimal k-anonymity solution for D1...n is therefore the optimal
k-anonymity solution for D1...m plus the cost of Dm...n. Therefore, by varying m, we can reduce the
larger n-sized problem to the smaller m-sized problem.

3

Differential privacy

A different way to allow privacy-preserving queries of a data set is to restrict the types of queries
that can be made to the data set. Two data sets D1 and D2 are said to be neighbouring if at most
one row (one person’s data) is different between D1 and D2. For example, if D1 includes all the
patients that have visited the hospital today by 1 PM, one patient came in between 1 PM and 1:05
PM, and D2 includes all the patients by 1:05 PM, then D1 and D2 are neighboring.

Observe that a query Q can reveal private details of that last patient if applied to the above D1

and D2. Suppose Q returns the number of people who have HIV at the hospital. If Q(D1) + 1 =
Q(D2), then we know that the last patient who arrived has HIV. This motivating example serves
to show that we need Q(D1) and Q(D2) to return values with similar probabilities.

For a query Q to be differentially private, Q(D) needs to be understood as a random variable
with a probability distribution of possible outputs. Then, a query Q is said to be a ε-differentially
private query if for any neighbouring data sets D1 and D2, and for any possible output value k,

Pr(Q(D1) = k)

Pr(Q(D2) = k)
≤ eε

Note the following about the above definition:

� e is the natural number. ε must be a constant, independent of D.

� The above must be true for all values k that can be the output of a query on a data set.

� ε cannot be negative as we cannot achieve eε < 1: If Pr(Q(D1)=k)
Pr(Q(D2)=k)

< 1, then Pr(Q(D2)=k)
Pr(Q(D1)=k)

> 1.

� Generally, the way to achieve differential privacy is to take the regular, non-private query
Q̄(D) (which returns the true value) and add random noise, so Q(D) = Q̄(D) +R where R is
some random noise taken from a random distribution.

� As a consequence of the definition, if any valid data set can return some given value k with
non-zero probability, then all valid data sets must be able to return k with some probability.
A further corollary is that deterministic queries cannot be differentially private, except the
trivial query that returns the same value for all input.

We give two examples of mechanisms that can satisfy the above definition.

Example 1. Consider the above hospital database. Suppose there are Q̄(D) = N patients with
HIV. The hospital will output Q(D) = Q̄(D) + R, where R is generated as follows. First, decide
the sign of R randomly by flipping a coin (heads will be positive, tails will be negative). Then, flip
coins until we see tails. With each heads flip, the size of the counter will be increased by 1. We can
see that the probability of returning a N + δ as a result of this procedure is the two-sided geometric
distribution, Pr(Q(D) = N + δ) = (1/2)|δ|+2 for δ 6= 0, and Pr(Q(D) = N) = (1/2). For any two
neighbouring data sets, the total number of patients with HIV differs by at most 1; consider D1

with N HIV patients with D2 with N + 1 HIV patients. Then for any k = N + ∆k where ∆k ≥ 1,

Pr(Q(D2) = k)

Pr(Q(D1) = k)
=

(1/2)|∆k|

(1/2)|∆k|−1
= 2

The inverse can be shown to be equal to 2 as well if ∆k ≤ 0. If ∆k = 0, the above becomes 4.
Therefore, Q satisfies ln 4-differential privacy.

4

Example 2. Consider a database of salaries of professors. Suppose the university allows you to
make a query on the mean salary paid to professors, with noise from Laplace(0, b) (a Laplace
distribution with mean 0 and diversity b) added to the output. Suppose the mean salary of D1

is M1 and the mean salary of D2 is M2 and without loss of generality M1 > M2. Suppose any
professor’s maximum salary is known to be G. Then for any k > M1 where k = M1 +x1 = M2 +x2,

Pr(Q(D2) = k)

Pr(Q(D1) = k)
=

(1/2b)e−
x2
b

(1/2b)e−
x1
b

= e

x1 − x2

b

≤ e

|x1 − x2|
b

= e

|M1 −M2|
b

For M2 < M1, the inverse of the above equation produces the same result. Therefore, Q satisfies
|M1−M2|

b
-differential privacy.

5

Secure Multiparty Computation

When two parties want to jointly compute a function Q on their separate data sets D1 and D2

without leaking their data sets to each other, they may do so using secure multiparty computation
(SMPC). We will assume that both parties will honestly execute the protocol because they both
want to know Q(D1, D2), but they should be prevented from knowing the other party’s data in the
process. For example, two millionaires who want to find out who is richer can use SMPC to find
the answer without revealing their wealth.

SMPC is generally computationally costly: it takes around 20 minutes to compute a single AES
encryption with two keys held by two parties. (Consider that any internet-capable device encrypts
thousands of packets with AES every second.) One advantage of SMPC is that there is no distortion
or noise; the true output is given to both parties.

Achieving SMPC

We can achieve SMPC by using Yao’s garbled circuits. Represent Q as a circuit, where the circuit
inputs are D1 and D2, and both parties can arrive at the output.

We describe how garbling works as follows. One person (say, Alice) will garble the circuit and
one person (say, Bob) will evaluate it. Alice will garble each gate of the circuit as follows. Suppose
the truth table of the gate with inputs I, J and output O is written as follows (in this example, it
is an XOR gate):

I J O

0 0 0
0 1 1
1 0 1
1 1 0

Alice will randomly generate six random strings known as garbled strings, I0, I1, J0, J1, O0, O1.
The garbled strings look like long, random bit strings. Alice will remember, for example, that I0

corresponds to a 0 bit in the first input of this gate, and O1 corresponds to the output bit of this
gate being 1. Bob will not know this information, so if Bob sees I1, for example, he does not
know what it means. Alice will then encrypt each output garbled string by using the corresponding
input garbled strings as keys. Alice also chooses some publicly known long string A (say, 64 bits of
zero). For the XOR gate above, the encrypted output garbled strings, after random reordering, is
as follows:

Encrypted O

EncI1,J0(O1||A)
EncI0,J0(O0||A)
EncI0,J1(O1||A)
EncI1,J1(O0||A)

The above table, the garbled gate table, is shared with Bob. Given some garbled input strings,
Bob will try to decrypt all 4 values above. Only one of them will return an output with proper
format (Bob should see the string A), and Bob can then obtain either O0 or O1 from it. The other
four will return bad output that cannot be used by Bob in any way.

Note that Bob cannot know, from decrypting the above table, whether O corresponds to 0 or 1
either. This is because it is randomly reordered. For example, the second element above actually
corresponds to I0 ⊕ J0 = O0, but Bob does not know that.

6

We re-iterate the above construction for all gates in the circuit. For example, if the output bit
of this gate is connected to some other gate, then it must be constructed with the same garbled
strings O0 or O1 at the input.

Alice will give Bob the garbled gate tables for all gates, and Alice will give him her garbled
input strings at the start of the circuit. Her privacy is preserved since Bob does not know what her
garbled inputs mean. However, Bob also needs to know the garbled input strings corresponding
to his inputs as well, without telling Alice his actual inputs. The mechanism to do so is known as
oblivious transfer.

Oblivious transfer can be done as follows. Suppose Bob’s true input bit is 0, and Bob wants
J0 from Alice. Alice generates the RSA public parameters, N as a product of two large primes,
public key e, and private key d, where mde ≡ m (mod N) for any message m. (All of the following
operations are in modulo N space.) Then Alice generates two random strings x0 and x1 and sends
them to Bob. Bob chooses x0 (because his input bit is 0), and generates a random k, and sends
v = x0 + ke to Alice. Alice will reply with m0 = J0 + (v − x0)d and m1 = J1 + (v − x1)d to Bob.
Note that m0 = J0 + k but m1 6= J1 + k; m1 is effectively a failed attempt to decrypt v but Alice
does not know that. After sending m0 and m1 to Bob, Bob will take m0 − k (discarding m1) and
thus obtain J0.

We see that Alice and Bob now both know the garbled circuit and the correct way to obtain the
output for each gate: attempt to decrypt all four values in the corresponding garbled gate table.
Therefore both Alice and Bob can execute the entire circuit and obtain the garbled output string
of the entire circuit. Only Alice will know the meaning of the garbled output string, so Alice will
share that with Bob. (It is possible to ensure Alice cannot cheat at this stage with cryptographic
commitments.)

7

Private Information Retrieval

Private Information Retrieval (PIR) is useful if a data user wants the data owner to answer Q(D)
without knowing what Q was. A scheme can be said to be information theoretic or computational:

� Information theoretic PIR: We can prove that the data owner cannot know Q without any
restrictions on the data owner.

� Computational PIR: We can prove that the data owner cannot know Q if we assume that
the data owner cannot compute a certain hard problem.

This is analogous to cryptography: one-time pads are information theoretically secure, whereas
RSA relies on a computational assumption (the difficulty of the integer factorization problem). PIR
schemes can also be said to be single-database or multi-database:

� Single-database PIR: There is only one data owner.

� Multi-database PIR: There are multiple non-colluding data owners who are all willing to
serve the data user.

A trivial single-database information theoretic PIR scheme is to have the user download the
entire database. This costs a lot of communication overhead, so it is not desirable. However, it can
be proven that there is no better single-database information theoretic PIR scheme.

We construct a multi-database information theoretic PIR scheme as follows. Suppose the
database is written as a block of bits:

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

Each xi,j represents one bit. Suppose there are four database owners. Alice wants to retrieve
some specific xI,J without letting any of the four database owners know what she wants to retrieve.
She will randomly choose each column with one half chance and each row with one half chance.
Suppose she chooses the following (coloured):

R
x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

C
x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

Let us call the set of rows chosen R and the set of columns chosen C respectively. Suppose the
real data she wants is xI,J , i.e. the data in row I column J . She will generate R′ = R⊕ I, where ⊕
means putting row I in R if it was not in R, and removing row I from R if it was in R. She will
also generate C ′ = C ⊕ j. Then she will send the following four requests to the four databases:

1. DB1: Return XOR of all data in rows R and columns C.

2. DB2: Return XOR of all data in rows R′ and columns C.

8

3. DB3: Return XOR of all data in rows R and columns C ′.

4. DB4: Return XOR of all data in rows R′ and columns C ′.

Suppose she wants x4,3, in our example the requests are drawn in the following four tables:

DB1
x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB2
x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB3
x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

DB4
x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

The replies are the XORs of all the darker green cells, which are:

� DB1: x3,2 ⊕ x3,3 ⊕ x5,2 ⊕ x5,3.

� DB2: x3,2 ⊕ x3,3 ⊕ x4,2 ⊕ x4,3 ⊕ x5,2 ⊕ x5,3.

� DB3: x3,2 ⊕ x5,2.

� DB4: x3,2 ⊕ x4,2 ⊕ x5,2.

Alice simply XORs the replies of all four databases to get her x4,3. It is easy to prove, in general,
that following this scheme, only xI,J will appear an odd number of times in the output; any other
bit will appear an even number of times. This means that XORing all the replies will produce xI,J .
Note that each database only sees, from its own perspective, a series of random row and column
requests. Also note that if any two databases collude, they can deduce either the row or the column
of Alice’s real request, or both. The communication required to satisfy such a request is O(

√
n),

where there are n bits in total in the database.
We construct a single-database computational PIR scheme as follows. This requires the use of

a homomorphic encryption scheme, which satisfies the special property that encryption E satisfies:

E(M1 ·M2) = E(M1) · E(M2)

The key is abbreviated away from the notation to avoid confusion. Note that the above prop-
erty is not true for any of the encryption schemes we have learned. In particular, homomorphic
encryption is computationally expensive, sometimes prohibitively so.

Suppose that we are using such a scheme, where the data user Alice has the ability to encrypt
with E and decrypt with F , and the data owner Bob has neither. Suppose the data is written as
x1, x2, · · · , xn, each xi representing one bit, and Alice wants xI . For each bit xi she constructs qi
for all i from 1 to n where:

qi =

{
E(1), if i = I

E(0), otherwise.

9

She would of course ensure that E(0) is different every time it is encrypted (by using an IV).
The data owner, upon receiving q1, q2, · · · , qn, replies with:

R = Σn
i=1xi · qi

When Alice decrypts R, homomorphic encryption ensures that:

D(R) = D
(
Σn
i=1xi · qi

)
= Σn

i=1xi ·D(qi) = xI

In particular, the last equality is because D(qi) = 0 for all i except i = I, where instead
D(qi) = 1. Thus she has retrieved xI revealing no information about what she requested, assuming
the attacker cannot break the homomorphic encryption, which is the computational assumption.

10

