
CMPT 403 – Bonus Material

Deniable Messaging
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Repudiability

• PKE + PKI allows authentication
• But having our identities provably attached to our message isn’t 

always desirable
• Connecting identity with behavior compromises privacy

• Repudiability/Deniability: Messages sent in this channel cannot 
be proven by any other party to have originated from the sender

• Can we design a cryptographic protocol to allow authentication, 
but also allow repudiability?
• That is to say, Bob believes Alice is Alice, but Bob cannot 

prove to anyone else that Alice is Alice
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Repudiability

• Consider a SKE setup:

• Bob can check the MAC to ensure that whomever sent this must 
have the secret key

• Bob knows he himself did not write M, so Alice did
• But Bob cannot prove Alice wrote M to anyone else, since Bob 

could’ve written M

BobAlice
EncK(M), Hash(EncK(M), K)K K
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Forgeability

• A forgeable ciphertext is a ciphertext that anyone, not just Alice 
or Bob, could have written
• Even the intercepting attacker could have created this 

message
• This can be achieved with malleable encryption

• Recall: Ciphertexts encrypted with malleable encryption can 
be edited to produce predictable changes in the plaintext

• This can also be achieved by revealing the key
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Forward secrecy

• We want to limit damage if keys are exposed
• A (long-term) key in a cryptosystem has forward secrecy if 

leaking that key does not expose past conversations 
• To achieve this, we ensure that:

• Long-term keys are only used for signing
• Encryption is done only with short-term (session) keys

Keys exposed!

These conversations are safe These are not safe
(Eve could’ve started them)
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Break-in Recovery

• A cryptosystem has break-in recovery if future conversations 
after the point of compromise are safe
• Also known as future secrecy
• If we only use short-term keys, we have break-in recovery; 

but we need long-term keys to bootstrap trust

Keys exposed!

These conversations
are safe
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Double Ratchet Algorithm

• Used in the Signal Protocol
• WhatsApp, possibly Facebook Messenger and Skype

• Based on the Off-the-Record Messaging algorithm
• Achieves repudiation, forward secrecy, and break-in recovery
• Based on two sets of ratchets:

• The Diffie-Hellman ratchet generates ratchet keys
• The symmetric key ratchet generates message keys based on 

ratchet keys
• A ratchet key can be used to generate several message keys 

from the same sender
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Double Ratchet Algorithm
Diffie-Hellman Ratchet

• Consider DH:
• Generator g
• Alice’s private key is x, public key is gx

• Bob’s private key is y, public key is gy

• Shared secret becomes gxy

• In the Diffie-Hellman Ratchet, a sequence of shared secrets is 
generated

• A new shared secret is generated whenever someone who has 
just received a message wants to send a message

• Ratchet keys will be generated from those shared secrets
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Diffie-Hellman Ratchet

gA1B1

gA1 gB1A1 B1

Private Public PrivatePublicRatchet key

gA1B1

Ratchet key

gA2A2

gA2B1 gA2B1

gB2 B2

gA2B2 gA2B2

gA3A3

gA3B2 gA3B2

Alice Bob
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Double Ratchet Algorithm
Diffie-Hellman Ratchet

• What happens if a private key is compromised later?
• Then exactly 2 ratchet keys are compromised
• If it is B5, then they would be gA5B5, gA6B5 (if Alice talks first)
• No other past or future ratchet keys, or messages depending 

on those keys, are compromised: forward secrecy and future 
secrecy

• The ability to encrypt and create HMACs using the ratchet key 
would also provide repudiability, as long as we avoid signatures
• In reality, we refrain from using the ratchet key directly to 

further reduce the attacker’s attack surface
10



Double Ratchet Algorithm
Symmetric Key Ratchet

Based on Key Derivation Function Chains:

KDF

Root key

KDF

Usable key

Usable key

KDF Usable key

Input

Input

Input

The point is to create 
usable temporary keys 
that can be leaked without 
compromising other keys.
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Double Ratchet Algorithm
Symmetric Key Ratchet

First, the ratchet keys produces sending/receiving keys:

KDF

Root key

KDF

Sending key

Receiving key

KDF Sending key

Ratchet key 1 (Alice’s side) First ratchet 
key is Alice’s first sending 
key; Bob’s would start 
with a receiving keyRatchet key 2

Ratchet key 3
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Double Ratchet Algorithm
Symmetric Key Ratchet

Each sending/receiving key starts its own symmetric key KDF chain:

KDF

Sending key

KDF

Message key

Message key

KDF Message key

Constant Each message key is used 
for only one message.

Constant

Constant
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Double Ratchet Algorithm

• KDF chains generates a series of keys, each key based on the 
previous root key and an input

• The DH ratchet generates and procedurally updates ratchet keys
• A new chain is started whenever one side switches from 

receiving to sending
• The ratchet keys are used as input to the DH KDF chain to 

generate sending and receiving chain keys
• Chain keys are used as the bootstrapping root key for symmetric 

key DF chains to generate message keys

Review
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Double Ratchet Algorithm

• Benefits of using two ratchets:
• Each message key can be deleted after one use; 

sending/receiving keys can be deleted after all relevant 
messages are sent/received

• Handling of out-of-order/dropped messages is possible
• Limits compromise of messages from key leakage

• Sending/receiving keys can compromise multiple 
messages

• Ratchet key plus a previous root key for the same
• Each message key can leak one message
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Double Ratchet Algorithm

• Can we also achieve forgeability?
• Possibly, by releasing MAC keys (not decryption keys)

• A message participant can still collude with an outsider to prove 
messages sent by the other participant are real
• It is possible to resolve this problem (“strong deniability”)

• This does not work for group messaging
• The property that an HMAC indirectly proves identity does 

not follow for group messaging
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