
CMPT 403 – Bonus Material

Deniable Messaging

1



Repudiability

• PKE + PKI allows authentication
• But having our identities provably attached to our message isn’t 

always desirable
• Connecting identity with behavior compromises privacy

• Repudiability/Deniability: Messages sent in this channel cannot 
be proven by any other party to have originated from the sender

• Can we design a cryptographic protocol to allow authentication, 
but also allow repudiability?
• That is to say, Bob believes Alice is Alice, but Bob cannot 

prove to anyone else that Alice is Alice

2



Repudiability

• Consider a SKE setup:

• Bob can check the MAC to ensure that whomever sent this must 
have the secret key

• Bob knows he himself did not write M, so Alice did
• But Bob cannot prove Alice wrote M to anyone else, since Bob 

could’ve written M

BobAlice
EncK(M), Hash(EncK(M), K)K K

3



Forgeability

• A forgeable ciphertext is a ciphertext that anyone, not just Alice 
or Bob, could have written
• Even the intercepting attacker could have created this 

message
• This can be achieved with malleable encryption

• Recall: Ciphertexts encrypted with malleable encryption can 
be edited to produce predictable changes in the plaintext

• This can also be achieved by revealing the key

4



Forward secrecy

• We want to limit damage if keys are exposed
• A (long-term) key in a cryptosystem has forward secrecy if 

leaking that key does not expose past conversations 
• To achieve this, we ensure that:

• Long-term keys are only used for signing
• Encryption is done only with short-term (session) keys

Keys exposed!

These conversations are safe These are not safe
(Eve could’ve started them)

5



Break-in Recovery

• A cryptosystem has break-in recovery if future conversations 
after the point of compromise are safe
• Also known as future secrecy
• If we only use short-term keys, we have break-in recovery; 

but we need long-term keys to bootstrap trust

Keys exposed!

These conversations
are safe

6



Double Ratchet Algorithm

• Used in the Signal Protocol
• WhatsApp, possibly Facebook Messenger and Skype

• Based on the Off-the-Record Messaging algorithm
• Achieves repudiation, forward secrecy, and break-in recovery
• Based on two sets of ratchets:

• The Diffie-Hellman ratchet generates ratchet keys
• The symmetric key ratchet generates message keys based on 

ratchet keys
• A ratchet key can be used to generate several message keys 

from the same sender

7



Double Ratchet Algorithm
Diffie-Hellman Ratchet

• Consider DH:
• Generator g
• Alice’s private key is x, public key is gx

• Bob’s private key is y, public key is gy

• Shared secret becomes gxy

• In the Diffie-Hellman Ratchet, a sequence of shared secrets is 
generated

• A new shared secret is generated whenever someone who has 
just received a message wants to send a message

• Ratchet keys will be generated from those shared secrets
8



Diffie-Hellman Ratchet

gA1B1

gA1 gB1A1 B1

Private Public PrivatePublicRatchet key

gA1B1

Ratchet key

gA2A2

gA2B1 gA2B1

gB2 B2

gA2B2 gA2B2

gA3A3

gA3B2 gA3B2

Alice Bob

9



Double Ratchet Algorithm
Diffie-Hellman Ratchet

• What happens if a private key is compromised later?
• Then exactly 2 ratchet keys are compromised
• If it is B5, then they would be gA5B5, gA6B5 (if Alice talks first)
• No other past or future ratchet keys, or messages depending 

on those keys, are compromised: forward secrecy and future 
secrecy

• The ability to encrypt and create HMACs using the ratchet key 
would also provide repudiability, as long as we avoid signatures
• In reality, we refrain from using the ratchet key directly to 

further reduce the attacker’s attack surface
10



Double Ratchet Algorithm
Symmetric Key Ratchet

Based on Key Derivation Function Chains:

KDF

Root key

KDF

Usable key

Usable key

KDF Usable key

Input

Input

Input

The point is to create 
usable temporary keys 
that can be leaked without 
compromising other keys.

11



Double Ratchet Algorithm
Symmetric Key Ratchet

First, the ratchet keys produces sending/receiving keys:

KDF

Root key

KDF

Sending key

Receiving key

KDF Sending key

Ratchet key 1 (Alice’s side) First ratchet 
key is Alice’s first sending 
key; Bob’s would start 
with a receiving keyRatchet key 2

Ratchet key 3
12



Double Ratchet Algorithm
Symmetric Key Ratchet

Each sending/receiving key starts its own symmetric key KDF chain:

KDF

Sending key

KDF

Message key

Message key

KDF Message key

Constant Each message key is used 
for only one message.

Constant

Constant
13



Double Ratchet Algorithm

• KDF chains generates a series of keys, each key based on the 
previous root key and an input

• The DH ratchet generates and procedurally updates ratchet keys
• A new chain is started whenever one side switches from 

receiving to sending
• The ratchet keys are used as input to the DH KDF chain to 

generate sending and receiving chain keys
• Chain keys are used as the bootstrapping root key for symmetric 

key DF chains to generate message keys

Review

14



Double Ratchet Algorithm

• Benefits of using two ratchets:
• Each message key can be deleted after one use; 

sending/receiving keys can be deleted after all relevant 
messages are sent/received

• Handling of out-of-order/dropped messages is possible
• Limits compromise of messages from key leakage

• Sending/receiving keys can compromise multiple 
messages

• Ratchet key plus a previous root key for the same
• Each message key can leak one message

15



Double Ratchet Algorithm

• Can we also achieve forgeability?
• Possibly, by releasing MAC keys (not decryption keys)

• A message participant can still collude with an outsider to prove 
messages sent by the other participant are real
• It is possible to resolve this problem (“strong deniability”)

• This does not work for group messaging
• The property that an HMAC indirectly proves identity does 

not follow for group messaging

16


	Slide 1
	Slide 2: Repudiability
	Slide 3: Repudiability
	Slide 4: Forgeability
	Slide 5: Forward secrecy
	Slide 6: Break-in Recovery
	Slide 7: Double Ratchet Algorithm
	Slide 8: Double Ratchet Algorithm
	Slide 9
	Slide 10: Double Ratchet Algorithm
	Slide 11: Double Ratchet Algorithm
	Slide 12: Double Ratchet Algorithm
	Slide 13: Double Ratchet Algorithm
	Slide 14: Double Ratchet Algorithm
	Slide 15: Double Ratchet Algorithm
	Slide 16: Double Ratchet Algorithm

