
9. Refactoring

CMPT276 - L9 1

Technical debt

• Debt incurred when programming goal is achieved with a shortcut,
ignoring good practices
• “Hack”

• Examples: Bad OOP, class bloat, dead code, unmaintained code, etc.

• Incurs “interest” – debt must be repaid

• Good programming gets the job done; great programming reduces
future work

• Refactoring is one solution to technical debt

CMPT276 - L9 2

Quake 3 Arena Code
(calculates 1/sqrt(number))

CMPT276 - L9 3

Clean Code

Smelly Code Clean Code

Repetitive DRY

Unclear, bloated Easy to understand

Fails tests Successful implementation

Fails integration Easy to integrate

Blocks functionality, prevents
change

Makes it easy to add functionality
and improve the software

CMPT276 - L9 4

What is refactoring?

• “Cleaning up” code to improve it
• Can be done during code review

• Can be done while fixing bugs

• Refactoring is not:
• Commenting your code

• Adding features

• Renaming variables

• Fixing bugs

• Design

CMPT276 - L9 5

When to refactor?

• Red/green test:
• Red: something has failed (unit testing, integration testing, buges)

• Green: Fix enough to stop the failure

• Refactor afterwards

• “Make the change easy, then make the easy change”

• Software exhibits anti-patterns (“code smells”)

CMPT276 - L9 6

What makes refactoring difficult?

• Takes time – management sees no need

• Fear that code will not work after refactoring
• How do we ensure this does not happen?

• Too much refactoring
• Refactoring can create more code smells

CMPT276 - L9 7

Code Smells: Bloaters

• Bloaters are functional code that have become too hard to work with

• Example: Large classes/methods
• It is almost always easier to add new functionality to existing classes/methods

than to create new ones

• Over time, they become harder and harder to understand and test

• Compromises the Single Responsibility Principle

• Often produces dead code without anyone noticing

CMPT276 - L9 8

Bloater: ?

CMPT276 - L9 9

Bloater: Magic Numbers

• Numbers with unclear meaning

• Problems:
• Hard to read

• Difficult to debug and maintain: logic of code is not transparent

• Solution:
• Replace magic numbers with declared constants

• Fully implement desired code functionality

CMPT276 - L9 10

cur_speed = -9.8 * time
GRAVITATIONAL_CONST = -9.8
cur_speed = GRAVITATIONAL_CONST * time

Bloater: ?

CMPT276 - L9 11

class Enemy {
int[] stats = new int[4];
int get_HP() {return stats[0];}
int get_ATK() {return stats[1];}
void on_hit(int damage) {

stats[0] -= damage;
}

}

Bloater: ?

CMPT276 - L9 12

class Customer {
String address;
String country;
String province;
String city;
String zipCode;
...

}

Bloater: Primitive Obsession

• Over-use of primitives: strings, arrays, constants, enums, etc.
• e.g. Large array that stores multiple unrelated variables

• e.g. ROLE = 1 is user, ROLE = 2 is admin, ROLE = 3 is guest, etc.

• Problem:
• Not extensible

• Breaks single responsibility

• Solution:
• Replace primitives by implementing objects

• State pattern can be used

CMPT276 - L9 13

Bloater: Primitive Obsession

CMPT276 - L9 14

class Customer {

String address;

String country;

String province;

String city;

String zipCode;

...

}

class Customer {

Address address;

...

}

class Address {

String get_country() {...}

}

Bloater: Long Parameter List

CMPT276 - L9 15

void read_customerlist(String filename)

• You write some simple code to read list of customers

• Later, you’re asked to expand it to read lists of orders too and convert
prices from CAD to USD or not

• Later yet, because there are too many customers, you also want to be
able to limit reading a certain range or certain number of customers

void read_customerlist(String filename, Boolean isOrder, Boolean convertPrices)

void read_customerlist(String filename, Boolean isOrder, Boolean
convertPrices, int numCustomers, Date startDate, Date endDate)

Bloater: Long Parameter List

• Problems: Hard to read, hard to call, even harder to test

• Some ways to fix this:
• Settings should belong to the class; isOrder, convertPrices and numCustomers

can belong to the CustomerList class, and set by the caller

• Group parameters together: use a DateRange object instead of startDate and
endDate

• Separate concerns: Write a different method to convert prices or to read
order lists

CMPT276 - L9 16

Code smells: OOP Misuse

• This category of code smells covers over-use or mis-use of object-
oriented programming principles

CMPT276 - L9 17

public Boolean allow_action(action, person) {
switch (person.role) {

case roles.ADMIN:
//allow editing all documents
break;

case roles.USER:
//allow editing own documents
break;

case roles.GUEST:
//allows viewing all documents
break;

}
}

OOP Misuse: Switch statements

• Switch statements should generally be replaced with polymorphism
• Admin, User, and Guest should be different subclasses of User

• Each class handles its own (inherited) allow_action()

• Alternative: Use State design pattern
• Person’s role becomes its own object and is composed by allow_action()’s

class

• allow_action() ask’s the role object whether or not to allow the action

CMPT276 - L9 18

OOP Misuse: Incomplete Inheritance

• If a child object is using only a small part of the methods of the parent
class, then OOP is not being used correctly

• Caused by need for code reuse

• Issues: The methods are still there, and may cause errors
• e.g. You have a Furniture (tables, chairs, closets, etc.) class that has methods:

move(), getMaterial(), paintColor(),

• Later, you decide Doors are Furniture, but calling move() on them would
cause an error

• Later yet, you decide Beds are also Furniture, but paintColor() and
getMaterial() both return unexpected results

CMPT276 - L9 19

OOP Misuse: Incomplete Inheritance

• Solution: Either abandon inheritance or improve it

• Abandoning inheritance: Use object composition instead
• Put an object of the superclass inside of the target class

• Call methods of the superclass whenever necessary

• Now it is not possible to call Door.move();

CMPT276 - L9 20

class Door {
Furniture DoorFurniture;
Material getMaterial() {

return DoorFurniture.getMaterial();
}

}

OOP Misuse: Incomplete Inheritance

• Improving Inheritance: Rethink the inheritance structure

• Bed example:
• Put Furniture under Moveable, put the Furniture.move() function under

Moveable class, then inherit Bed from Moveable; or

• Create PaintableFurniture subclass and put tables, chairs under it; put
paintColor() in it only

• Good inheritance makes code extensible

CMPT276 - L9 21

OOP Misuse: ?

CMPT276 - L9 22

class QuadSolver {
static double determinant;
static double[] solve(double a, double b, double c) {

get_determinant(a, b, c);
if (determinant > 0) {
return new double[]{ (-b + Math.sqrt(determinant)) / 2*a,

(-b - Math.sqrt(determinant)) / 2*a};
}
else if (determinant == 0) {

return new double[]{-b / 2*a};
}
else return null;

}
static void get_determinant(double a, double b, double c) {

determinant = b*b - 4*a*c;
}

}

OOP Misuse: Temporary Fields

• Fields in a class that are only used to store a temporary value to
support methods

• Problems:
• Makes code harder to read since fields are only related to a few methods

• Correct and possible ranges of values are not clear, harder to test

• Possible misuse of field value

• Solution:
• Usually simple: set the temporary field to be a local variable within the useful

methods

CMPT276 - L9 23

Code Smell: Change Preventers

• Change preventers increase the cost of making changes/adding
features to the code

• Two main cases:
• Modification requires many different changes to a class

• Modification requires making the same change to many classes

• Both due to poor class structure/programming

CMPT276 - L9 24

Change Preventer: Divergent Change

• Case 1: Type change

• If we need to change HP from int to float…

CMPT276 - L9 25

class Player {
private int maxHP;
private int HP;
private int DEF;
void on_attacked(Enemy enemy) {

this.HP -= (enemy.ATK - this.DEF);
}
int getHP() {

return HP;
}
Boolean isFullHP() {

return (maxHP == HP);
}

}

Change Preventer: Divergent Change

• Case 1: Type change

• Types should not be changed (including interfaces)

• Lazy way out: Add another variable and switch to that one
• This can create dead code (another code smell)

• Re-examine design; types and rationale should be defined in design
• Why did we want HP to be an int in the first place?

• If there’s a good reason, perhaps the change should not be made

CMPT276 - L9 26

Change Preventer: Divergent Change

• Case 2: Adding functionality

• If we need to add a new type of product…

CMPT276 - L9 27

class Order {
Product product;
float getPrice() {

if (product.name == "Apple") {return 4.5}
if (product.name == "Orange") {return 4.1}
...

}
float getDiscount() {

if (product.type == "Fruit") {return 0.95}
else
...

}
}

Change Preventer: Divergent Change

• Adding a new product requires changing every method that
hardcodes conditionals based on the product

• Not the right way to code
1. Export prices/discounts into a database file

2. Read the prices/discounts into each Product

3. Each Product has a getPrice() and a getDiscount() to retrieve them

• Divergent Change may also be a result of Bloater classes: solution is
to extract different methods into different classes

CMPT276 - L9 28

Change Preventer: Shotgun Surgery

• You have many Enemies and Objects that each have an onAttacked()
method

• The onAttacked() method checks range between Enemy and Player,
and applies an effect
• e.g. a Trap is dismantled, an Enemy is hit, a Button is pressed

• Later, you find that there is a bug: the Player can hit things through a
wall!

• Now, it is time to add a check for walls…
• Every onAttacked() needs to be fixed!

CMPT276 - L9 29

Change Preventer: Shotgun Surgery

• The responsibility for handling attacks was given to many classes

• Shallow fix: add a method to Player that handles attacks, onAttack()
• Change the logic for resolving attacks to first pass through onAttack(), then go

through the target’s onAttacked()

• Deep fix: add a class that handles attacks
• Rewrite code so that this class handles attack results

CMPT276 - L9 30

Change Preventer: Shotgun Surgery

• Other examples:

1. Many functions are logging by calling the same function

2. Each function on a customer account is checking the customer’s
balance

3. Each function on a user account is checking the user’s permissions

CMPT276 - L9 31

Code Smells: Dispensables

• Dispensables are not helpful for the code, but are generally indicative
of a larger issue

• Example: Excessive explanatory comments
• Commenting is good, but it is indicative of a deeper issue

• The best comment is a method’s name and API

• Some possibilities are:

1. Code solves a problem in a “hacky” manner

2. Bloated method that handles too much

3. Complicated expression that should be expressed with variables

CMPT276 - L9 32

Dispensables: Comments

CMPT276 - L9 33

if (((Order.cost >= 100 || Order.cost <= 200) && Customer.MemberStatus == 1) ||
Customer.MemberStatus == 2) { //Explain this…
discount = 0.9;

}

float MIN_DISCOUNT_COST = 100;
float MAX_DISCOUNT_COST = 200;
if (Customer.isSilverMember) {

if (Order.cost >= MIN_DISCUONT_COST && Order.Cost <= MAX_DISCOUNT_COST) {
discount = 0.9;

}
}
if (Customer.isGoldMember) {

discount = 0.9;
}

Dispensables: Comments

• Some other refactoring solutions:
• Extract complicated code into its own method, and use the method name/API

to help explain it

• Give the method a better name

• Use assertions with clear definitions:

CMPT276 - L9 34

int getSelectedFont() {
// Either there is selected text or
// there is a selected box.
return (selectedText.length() > 0) ?
selectedText.font :
selectedObject.text.font;

}

int getSelectedFont() {
Assert.isTrue(selectedText.length() > 0 ||
selectedObject != null);

return (selectedText.length() > 0) ?
selectedText.font :
selectedObject.text.font;

}

Dispensables: Duplicate Code

• Exact code duplicates because of copy-paste programming

• Near-duplicates because two or more programmers wrote the same
code separately
• e.g. duplicate file input/output operations

• e.g. duplicate access/correctness checks

• Duplicate code is harder to maintain
• Easily becomes dead code

• It may also indicate bad program structure

CMPT276 - L9 35

Dispensables: Duplicate Code

• Refactoring solution:
• If duplicate methods in the same class, remove one

• If duplicate methods in two subclasses, pull method up to parent class

• If duplicate methods in two classes, consider creating superclass or creating a
new class

• Rethink program structure – why did several programmers create the same
method?

CMPT276 - L9 36

Lazy Class

• Classes that do almost nothing should be removed
• The more classes there are, the harder it is to understand and maintain a

program

• May result from moving features of a class to another class

• Example: You created eight classes for monopoly spaces:
ColorProperty, Railroad, Utility, Jail, Card, Go, Parking, GoToJail
• Later, you find out that ColorProperty, Railroad and Utility are very similar, so

you made 1 Property superclass for them and moved all coinciding methods
into Property

• Now ColorProperty, Railroad, and Utility are nearly empty

• Parking is also a Lazy Class

CMPT276 - L9 37

Lazy Class: Data Class

• Data classes contain only data and getters/setters

• Either move more responsibilities into this class, or remove it

CMPT276 - L9 38

class Player {
PlayerStats playerStats;

}

class PlayerStats {
int HP;
int ATK;
int DEF;
int get_HP() {//...}

}

Code smell: Couplers

• Principle: Maximize cohesion, minimize coupling

• Coupling is excessive dependency between two different classes

• Law of Demeter: Each class should “only talk to its friends”
• A method can call its arguments’ methods, but no further from that

• Feature Envy: If a class excessively calls another class to provide
functionality

CMPT276 - L9 39

Couplers: Feature Envy

CMPT276 - L9 40

class Customer {
CustomerOrderList orderList;
float getOrderTotal() {

float orderTotal;
for (CustomerOrder order : orderList.getList()) {

orderTotal += order.getPrice();
}
return orderTotal;

}
Boolean isGoldMember() {

return orderList.isGoldMember();
}
void addOrder(CustomerOrder order) {

orderList.getList().add(order);
}

}

Couplers: Feature Envy

• Each method has an issue

1. getOrderTotal() should’ve been the responsibility of
CustomerOrderList; the method should be moved there

2. isGoldMember() should be the responsibility of Customer; the
Boolean should be moved to Customer

3. No one should call addOrder() through Customer; callers should be
made to call CustomerOrderList directly

• Feature Envy is a sign of problematic separation of concerns

• Sometimes it is best to move the envied class entirely into the
envying class

CMPT276 - L9 41

Couplers: Message Chains

• A method call that looks like this:

• Reduces “number of lines”, but is harder to read

• High coupling between calling code and player/customer class

• Solution: Hide the Delegate
• Create getLocationX() for Player, or getLocation() for Player and then extract

the X in the calling code

• Create printReceipt() for Customer

CMPT276 - L9 42

player.getStats().getLocation().getX()

customer.getOrder().generateReceipt().print()

Refactoring overview: Composing methods

• Writing good methods that handle the right amount of responsibility

• Good methods should have:
• Few or no explanatory comments

• Few parameters

• No excessive calls to other classes

• Good use of local variables

CMPT276 - L9 43

Refactoring overview: Moving features

• Many code problems can be solved by simply moving
methods/classes to the right place

• Move methods into the most appropriate class for single
responsibility

• Move methods out or extract a new class if a class has too many
responsibilities

• Similar classes should often be subclasses of a parent class

• However, if a subclass is not using its parent class, move it out

CMPT276 - L9 44

Refactoring overview: Design patterns

• Refactoring into design patterns is a common solution

• Constructors can be replaced with Factory Methods
• Especially useful when subclasses are created for the constructed object

• Types can be replaced with States

• Duplicate calls to implementation class can be replaced with
Command

• Excessive subclasses can be replaced with Decorator

CMPT276 - L9 45

Refactoring overview: Simplification

• Good engineering is simplicity

• Remove unnecessary parameters
• If several parameters of an object are used, pass the whole object

• Some parameters can be acquired by code body using a method call

• Merge similar methods using parametrization

• Avoid complicated conditionals
• Use several conditionals/methods

• Avoid “control flag” variables

• Use exceptions instead of error codes (“return -1”)

CMPT276 - L9 46

	Slide 1: 9. Refactoring
	Slide 2: Technical debt
	Slide 3: Quake 3 Arena Code (calculates 1/sqrt(number))
	Slide 4: Clean Code
	Slide 5: What is refactoring?
	Slide 6: When to refactor?
	Slide 7: What makes refactoring difficult?
	Slide 8: Code Smells: Bloaters
	Slide 9: Bloater: ?
	Slide 10: Bloater: Magic Numbers
	Slide 11: Bloater: ?
	Slide 12: Bloater: ?
	Slide 13: Bloater: Primitive Obsession
	Slide 14: Bloater: Primitive Obsession
	Slide 15: Bloater: Long Parameter List
	Slide 16: Bloater: Long Parameter List
	Slide 17: Code smells: OOP Misuse
	Slide 18: OOP Misuse: Switch statements
	Slide 19: OOP Misuse: Incomplete Inheritance
	Slide 20: OOP Misuse: Incomplete Inheritance
	Slide 21: OOP Misuse: Incomplete Inheritance
	Slide 22: OOP Misuse: ?
	Slide 23: OOP Misuse: Temporary Fields
	Slide 24: Code Smell: Change Preventers
	Slide 25: Change Preventer: Divergent Change
	Slide 26: Change Preventer: Divergent Change
	Slide 27: Change Preventer: Divergent Change
	Slide 28: Change Preventer: Divergent Change
	Slide 29: Change Preventer: Shotgun Surgery
	Slide 30: Change Preventer: Shotgun Surgery
	Slide 31: Change Preventer: Shotgun Surgery
	Slide 32: Code Smells: Dispensables
	Slide 33: Dispensables: Comments
	Slide 34: Dispensables: Comments
	Slide 35: Dispensables: Duplicate Code
	Slide 36: Dispensables: Duplicate Code
	Slide 37: Lazy Class
	Slide 38: Lazy Class: Data Class
	Slide 39: Code smell: Couplers
	Slide 40: Couplers: Feature Envy
	Slide 41: Couplers: Feature Envy
	Slide 42: Couplers: Message Chains
	Slide 43: Refactoring overview: Composing methods
	Slide 44: Refactoring overview: Moving features
	Slide 45: Refactoring overview: Design patterns
	Slide 46: Refactoring overview: Simplification

