Software Testing



Test the following code

* Given three integers representing the sides of a triangle, the problem
should return “scalene”, “isosceles”, or “equilateral”
* Scalene: No two sides equal
* Isosceles: Only two sides equal

* Equilateral: All three sides equal

e What are the test cases?



4

Checklist

 Did you:
* Have a test case for each possible correct input?
* Forisosceles, three permutations? (2, 2, 3), (2, 3, 2), (3, 2, 2)
e Test for negative inputs? (-2, 4, 4)
e Test for non-integer values? (3.5, 3.5, 4)
» Test if one or more sides is zero? (0, O, 0)
» Test for three inputs that don’t satisfy the triangle inequality? (1, 2, 3)
e Test for non-integer inputs?
e Test for wrong number of inputs? (2, 3)
e Test for no input?
» Specify the correct output for each case?




Testing mindset

* What is software testing?

* Testing is the process of quality assurance through error finding
* |t usually involves executing the program

* Testing should be seen as constructive
* The programmer should not test their own code



Software errors

* [ncorrect output

* Incorrect error handling

* Memory leak, resource hogging

* Crash, locking

 Security errors: buffer overflow, use-after-free, parsing, etc.



Causes of software errors

* Typos

e Control flow error

* Missed cases

* Misunderstood requirements
* Incorrect assumptions

* APl usage

* Code changing

* Memory referencing errors



4

Testing techniques

 Human testing techniques (code review)

* Code inspection
* Walkthrough

e Software testing techniques

e Test case design
e Black-box, white-box

* Unit testing
* Integration testing
* Usability testing



Code Inspection

* Manually inspecting code as a team
* Process is slow: usually no more than 200 statements per hour

* Team members:
* Original programmer: explains the code
* Moderator: senior coder that leads and organizes the inspection
 Tester: specialist that is familiar with testing code
* Possibly other programmers

e Use a checklist



Code Inspection checklist (example)

* Data reference (e.g. arrays): Are all referenced variables set? Are any
references out of bounds? User controlled references? Off-by-one
errors?

* Initialization: Are variables declared? If not, are the defaults correct?
Are variable declarations consistent with variable type?

» Comparison: Any confusion between greater/greater or equal to? Are
Boolean expressions used correctly?

* Control flows: Do loops terminate? Are looping conditions changed
during loop?




Walkthrough

* First, a tester prepares a list of test cases

* Team examines the code by going through these test cases manually,
discussing whether or not the code performs well in these test cases

* Compared to automated testing:
 Humans can give qualitative answers instead of quantitative ones
* Reviews can discuss efficiency and improve readability
* Can address edge cases and discuss correct response to unexpected inputs



White-box testing

* Also known as structural testing
* Derive test cases from examining the code and the requirements

* Advantage: Using knowledge of the implementation, we can derive
thorough test suites that cover all cases

* Disadvantage: Since tests are based on specific implementation, test
quality drops if implementation changes

* For now we focus on unit testing



4

White-box testing

* When can we say we have tested a piece of code completely?
e Statement coverage: Every line of code is run at least once

boolean 1s prime(int input) {
if (input == 1) {return false;}
if (input >= 2) {return true;}

}

e Two test cases: 1 and 2 will cover all statements
* Clearly, statement coverage is not sufficient



Control Flow Graph

e Control-flow graph: shows the program logic around control flow
statements (while, for, if...)

* Draw a control-flow graph of the following function:

Ein: binary search(int array[], int target, int start, int end) ({
= while (start <= end) {
int middle = (start + end) /

=l if (array[middle] == target) {
5 return middle;
- }
N = else if (array[middle] < target) {

start = middle +
= = }

10 &= else |

11 end = middle -

12 || }

14 return - ;




CO =] & 0 = L M =

b e e e e
G W = O W

I

Control Flow Graph

Eint binary search(int array[], int target, int start, int end) {
— while (start <= end) {

int middle = (start + end) / 2:
= if (array[middle] == target) {
return middle;

- }

= else 1if (array[middle] < target) {
start = middle + . ;

- }

= else {
end = middle - 1;

. }

. }

return -.;

CMPT276 - L8

start > end

start <=

array[middle] > targe array[middle] < target

14



4

Branch coverage

* Node coverage: All nodes are executed
start > end at least once

start <=lend

* Branch coverage: All branches are
traversed at least once

* Find 2 test cases that will cover all
branches and nodes
* [1,3,4,5, 6], find 2
* [1,3,4,5,6],find5

array[middle] == target

array[middle]|!= target

array[middle] > target array[middle] < target

CMPT276 - L8 15



4

Path coverage

start > end

start <= end

array[middle] == target

array[middle]|!= target

array[middle] > target array[middle] < target

* A path is a list of nodes traversed by a
test case
*[1, 3,4,5, 6], find 5:
* (2),(3,4),(7),(8),(2), (3, 4), (5)
* Path coverage can help determine test
set quality
e Attempt to cover all paths (within a limit)
* Find and remove repetitive test cases

CMPT276 - L8 16



4

Path coverage

* A simple path is a path with no node repetitions, except the start and
end can be the same

* A prime path is a simple path that cannot be lengthened any further
* This implies no prime path is a substring of another prime path

* Prime path coverage: What percentage of prime paths have been
tested?



s L A =

=] iy N

e e
Wk = O owom

Path coverage

.

>
°
°
°

if {(len{password) > 20} :
return True
has special chars = False
for (x in password) :
if (x in special chars):
has special chars = True
if ('has special chars):
return False
if (password.lower({) == password) :
return False
if {(len{password) < 10):
return False
return True

CMPT276 - L8

len(pwd) > 20

len(pwd) <= 20

pwd does not have special cha

=

S

have capitals
pwd contadins capitals

len(pwd) < 10 len(pwd) >= 10

18




4

Path coverage

* Prime paths are:
AT
* A,B,F
*ABCF
*A,BCDF
*ABCD,T

* Test cases should cover these five paths

CMPT276 - L8

len(pwd) > 20
len(pwd) <= 20

=

S

pwd does not
have capitals

pwd contadins capitals

len(pwd) < 10 len(pwd) >= 10

19




4

Logic coverage: MC/DC

* Modified condition/decision coverage
* Used by e.g. NASA for critical software

 Decision coverage: Final decision needs to be T/F at least once

* Condition coverage: Each condition in a decision needs to take on
all possible values at least once

* Decision coverage:
(total = 40, final = 60), (total = 60, final = 60)

* Condition coverage:
(total = 60, final = 40), (total = 40, final = 60)

if (total < 50 or final < 50) {
return False;

}

return True;




MC/DC

* MC/DC requires both decision and condition coverage, and:

Every condition in a decision has been shown to
independently affect that decision’s outcome.

* For example, if the relevant conditions are A, B, and C, then:
1. ForA:

 There needs to be two cases, A is True and A is False, where the outcome is different
 The values of B and C for those two cases needs to be the same

2. Repeat (1) and find two cases for B and C as well



4

Black-box testing

 Test cases are built only on specifications

* Without knowledge of program logic, it is harder to build complete
test cases

 Test cases are more likely to be useful if code changes
* Special case: Pentesting



4

Equivalence partitioning

* Derive “invalid” and “valid” ranges for each input value
* e.g. Age 18-65: Equivalences classes are <18, [18, 65], >65
e e.g. Score 50+: Equivalence classes are <50, >= 50
* e.g. Triangle testing code, three inputs: Equivalence classes are “two or fewer

n /(]

inputs”, “three inputs”, “more than three inputs”

* If program handles possible values of inputs differently, treat them as
different equivalence classes

* e.g. Grade displaying software: User is “student”, “teacher”, “admin” — three
equivalence classes
* Finally: there should be one test case for each equivalence class

* A test case can cover multiple valid equivalence classes, but only one invalid
equivalence class



4

Equivalence partitioning

* Example: Password code equivalence classes
* Length: <10 is invalid, 10-20 depends, >20 is valid
« Special chars: 0 is invalid, 1+ is valid Sl ¢ ‘lon(password) > 20);

* Capital letters: O is invalid, 1+ is valid S has_special_chars = False
= for (x in password) :
® Va“d tESt Cases: % if (x in special chars):
2 has special chars = True
¢ Length > 20 7 %if {'has special chars):
* Length 10-20, special char, capital letter return False

: %if (password. lower () == password) :
: R 10 return Fals=ze
° Invalld teSt Cases: 11 %if {len({password) < 10):
* Length < 10, has special char, capital 12 return False

13 return True

* Length 10-20, no special char, has capital
* Length 10-20, has special char, no capital

CMPT276 - L8 24



4

Boundary-value testing

* Experience tells us that values on the boundary are more likely to be
wrong

* Derive boundary values from equivalence classes

* Example: Code that performs safe addition of integers
* Ifa+b > INT_MAX or a+b < INT_MIN, we have a buffer overflow

* Equivalence classes: a+b < INT_MIN, INT_MIN <= a+b <= INT_MAX, a+b >
INT_MAX

* Boundary values: a+b = INT_MIN, a+b = INT_MIN — 1, a+b = INT_MAX, a+b =
INT_MAX +1

* We can also set a = INT_MIN and b = 0 individually, etc.



s
Boundary-value testing example

(Myers, Sandler and Badgett)

* A program grades multiple-choice question solutions
* Each line is 80 characters long

* Three parts:
 First line: Always a title
« Second part: Correct answers. They are marked with a “2” in the 80t character
 Third part: Student answers. They are marked with a “3” in the 80" character

 Each line after first contains 50 correct answers (10™ to 59" characters) or
50 student answers (at most 999 questions)

* First line contains number of questions in chars 1 to 3
e Each student line starts with a 9-character identifier, up to 200 students
* Output: Students and their grades and ranks, sorted by identifier



Boundary-value testing example

(Myers, Sandler and Badgett)

Title

qupég.ﬁ?lzs Correct answers 1-50 2

1 34 910 53 60 79 80
Correct answers 51-100 2

1 910 59 B0 79 80
Student identifier Student answers 1-50 3

1 910 59 60 79 80
Student answers 51-100 3

1 910 59 60 79 80

CMPT276 - L8

27



What are the test cases?

Header/correct answers tests:

=

© 00 N O Uk wWN

e S =
H w NN o

Empty file

Missing title

1-character title

80-character title

0-question exam

1-question exam

50-question exam

51-question exam

999-question exam

Number of questions is not a number
Number of questions is correct

No correct answers

Number of correct answers = number of questions + 1

Number of correct answers = number of questions - 1

Student answers tests:

15. No students

16. 1 student

17. 200 students

18. 201 students

19. Student answered 1 question but there are 2 correct answers
20. Student answered 2 questions but there is 1 correct answer
21. No student identifier

22. Non-number student identifier

23. Valid student identifier

Report tests:

24. All students have same grade

25. All students have different grade

26. Some students have same grade

27. Student has grade of 0

28. Student has maximum grade

29. Check sort: student has lowest identifier

30. Check sort: student has highest identifier



4

Boundary-value testing example

* Program that takes (day, month, year) and returns the next date
* Year from 1 to 3000

 What are the equivalence classes?
* Month: February, 30 day Months, 31 day Months
e Day: 1-28, 29, 30, 31

* Year: 4-year leap years, 100-year non-leap years, 1000-year leap years, other
non-leap years

* Choose tests for each of those cases



Boundary-value testing example

 Testing each type of month (year 2023):

« 1/0,1/1, 1/31, 1/32, 2/1, 2/28, 2/29, 4/30, 4/31, 12/31
» Testing each type of day (year 2023):

« 3/15, 3/29, 3/30, 3/31

* Testing each type of year:
« 2/28/2024, 2/28/2000, 2/28/2100
« 2/29/2024, 2/29/2000, 2/29/2100

 Overall boundaries:
« 1/0/1,1/1/1,12/31/3000, 12/31/3000, 1/1/3001



Cause-Effect Graphing

* Equivalence classes/Boundary-value analysis cannot explain how
inputs relate to each other

* We saw a version of this in the password example
e e.g. if number of questions * number of students > 4,000, OOM error

* First identify all causes and effects in the specification
* Then draw a cause-effect graph for the program
e Cause-effect graph helps us derive test cases



Cause-Effect Graphing

* Example Specification:

To load a save file, we first check if it is valid. The first character must

be “A” (Autosave) or “M” (Manual save), and the second character

must be a digit (save number). If the first character is wrong, output

“Save error”. If the second character is wrong, output “Save number

error”. If both are correct, load the save file.




Cause-Effect Graphing

Identity NOT
O—0O OO
@ OR c AND

\/
® O

CCCCCCCCCC




Cause-Effect Graphing

Exclusive: a and b are Inclusive: a, b, ¢
never both true are never all false

One and only one arequires b: if ais
of a and b are true true, b must be true
o2 R/

CMPT276 - L8

34



Cause-Effect Graphing

* Derive the test cases from the cause-effect graph
* Procedure:
1. Choose an effect and setitto T.

2. Backtrace through the graph finding all combinations that cause the
chosen effect to be T.
* Apply reduction strategies (next slide) to eliminate redundant combinations

3. Repeat step 1 until all effects are covered.



Cause-Effect Graphing

* Reduction strategies for back-tracing:

1. While tracing back an OR node where the output is T, only set one
output to 1 (e.g. FFT, FTF, TFF)

2. While tracing back an AND node where the output is F, consider all
cases (e.g. FF, FT, TF)

a) Terminate backtracing (find only 1 case) for any T inputs. Continue
backtracing through F’s.

b) Terminate backtracing (find only 1 case) for all inputs if all inputs are F.



4

Cause-Effect Graphing

* Example of reduction strategies
1. SetOltoT,soX=F

2.

Three cases for X = F:

1.

12 = F, 34 = F. Rule 2b: Stop backtracing;
findonlyonecase. (1=F2=F3=T,4=F)

12 = F, 34 =T. Rule 2a: Backtrace through
12. Since it is OR, there is only one case
anyway. (1=F,2=F3=T,4=T)

12 =T, 34 = F. Rule 2a: Backtrace through
34. Since it is AND, there are 3 cases.

* (1=T,2=F3=T,4=F),(1=T,2=F3=F 4=
T),(1=T,2=F3=F 4=F)

CMPT276 - L8

37



Cause-Effect Graphing

e Save file code, set O3 =T:

* Onlyonecasefor0O3 =T

¢ (12=T,3=T) e

* Backtrace through 12 =T:
* (1=T,2=F3=T)
* (1=F2=T,3=T)

CMPT276 - L8

38



4

Cause-Effect Graphing

e Password code:
1. Length > 20
2. Has special char /
3. Has capital 2 (
4. 10 <= Length <=20 |

* SetOK=T
e 1=TS=F
e« 1=FS=T->2=3=4=T

e 1 -T C—-T
== 1

l,\l

*Forl1=T,S=F

e Cases for 234: TTF, T+, TFF,
FTF, E=F

CMPT276 - L8 39



Cause-Effect Graphing

* Effective way to produce logical (and algorithmic) set of test cases
without explosion

* Should be combined with boundary value analysis for better test
coverage

* Sometimes, the best way is “error guessing”:
* |dentify common errors and generate test cases
* There is no systematic way to do so: it is based on tester experience



4

Unit testing (module testing)

 Unit tests focus on a single class
* They should not connect to external databases or services

* To test a class that relies on another class, set the other class as:

e Mock class: A fake class to examine its values to determine if the test worked.
Similar to crash-test dummy.

» Stub class: A fake class whose properties are fixed by the tester to control the
input.
* Example: Test the attack function of the player character
* Mock class: Check if attack has reduced HP of mock Enemy

 Stub class: Check if attack hits the enemy if it is close enough and does not hit
the enemy if it is far enough



4

Integration testing

* How do we test several modules that rely
on each other?

* Nonincremental approach: test A, B, C, D
separately, using mocks to replace classes;
then test them all together

* Incremental approach: Test B and D; then
test C-D; then test A-B-C-D

e Mocks are not needed

* Helps to test tightly coupled classes

CMPT276 - L8 42



4

* Example grading code:
A. Main code (calls B and C)

B. Reads and parses input answers and correct
answers

C. Publishes grades and statistics to students
D. Generates statistics based on grades

1. Test B and D individually

* D: Input grades, test statistics

2. Test C-D: Test if the grades are published
correctly, test if the statistics published by C
match those returned by D

3. Test the whole program

Incremental testing

CMPT276 - L8 43



4

Higher-order testing

Requirements

Functional Specifications

Non-functional Specifications

CMPT276 - L8

Acceptance Testing

Function Testing

System Testing

Integration Testing

Unit Testing

44



System testing

* Find issues with the whole system from various non-functional
perspectives

* Not based on the functional specifications
 Security, performance, storage, installation, reliability, etc.

* Aim to find issues, not to prove correctness
* e.g. Stress test a packet filter: raise packet rates until it fails
e e.g. Security testing: think like an attacker



	Slide 1: Software Testing
	Slide 2: Test the following code
	Slide 3: Checklist
	Slide 4: Testing mindset
	Slide 5: Software errors
	Slide 6: Causes of software errors
	Slide 7: Testing techniques
	Slide 8: Code Inspection
	Slide 9: Code Inspection checklist (example)
	Slide 10: Walkthrough
	Slide 11: White-box testing
	Slide 12: White-box testing
	Slide 13: Control Flow Graph
	Slide 14: Control Flow Graph
	Slide 15: Branch coverage
	Slide 16: Path coverage
	Slide 17: Path coverage
	Slide 18: Path coverage
	Slide 19: Path coverage
	Slide 20: Logic coverage: MC/DC
	Slide 21: MC/DC
	Slide 22: Black-box testing
	Slide 23: Equivalence partitioning
	Slide 24: Equivalence partitioning
	Slide 25: Boundary-value testing
	Slide 26: Boundary-value testing example
	Slide 27: Boundary-value testing example
	Slide 28: What are the test cases?
	Slide 29: Boundary-value testing example
	Slide 30: Boundary-value testing example
	Slide 31: Cause-Effect Graphing
	Slide 32: Cause-Effect Graphing
	Slide 33: Cause-Effect Graphing
	Slide 34: Cause-Effect Graphing
	Slide 35: Cause-Effect Graphing
	Slide 36: Cause-Effect Graphing
	Slide 37: Cause-Effect Graphing
	Slide 38: Cause-Effect Graphing
	Slide 39: Cause-Effect Graphing
	Slide 40: Cause-Effect Graphing
	Slide 41: Unit testing (module testing)
	Slide 42: Integration testing
	Slide 43: Incremental testing
	Slide 44: Higher-order testing
	Slide 45: System testing

