
Software Testing

CMPT276 - L8 1



Test the following code

• Given three integers representing the sides of a triangle, the problem 
should return “scalene”, “isosceles”, or “equilateral”
• Scalene: No two sides equal

• Isosceles: Only two sides equal

• Equilateral: All three sides equal

• What are the test cases?

CMPT276 - L8 2



Checklist

• Did you:
• Have a test case for each possible correct input?

• For isosceles, three permutations? (2, 2, 3), (2, 3, 2), (3, 2, 2)

• Test for negative inputs? (-2, 4, 4)

• Test for non-integer values? (3.5, 3.5, 4)

• Test if one or more sides is zero? (0, 0, 0)

• Test for three inputs that don’t satisfy the triangle inequality? (1, 2, 3)

• Test for non-integer inputs?

• Test for wrong number of inputs? (2, 3)

• Test for no input?

• Specify the correct output for each case?

CMPT276 - L8 3



Testing mindset

• What is software testing?

• Testing is the process of quality assurance through error finding
• It usually involves executing the program

• Testing should be seen as constructive

• The programmer should not test their own code

CMPT276 - L8 4



Software errors

• Incorrect output

• Incorrect error handling

• Memory leak, resource hogging

• Crash, locking

• Security errors: buffer overflow, use-after-free, parsing, etc. 

• …

CMPT276 - L8 5



Causes of software errors

• Typos

• Control flow error

• Missed cases

• Misunderstood requirements

• Incorrect assumptions

• API usage

• Code changing

• Memory referencing errors

• …

CMPT276 - L8 6



Testing techniques

• Human testing techniques (code review)
• Code inspection

• Walkthrough

• Software testing techniques
• Test case design

• Black-box, white-box

• Unit testing

• Integration testing

• Usability testing

CMPT276 - L8 7



Code Inspection

• Manually inspecting code as a team

• Process is slow: usually no more than 200 statements per hour

• Team members:
• Original programmer: explains the code

• Moderator: senior coder that leads and organizes the inspection

• Tester: specialist that is familiar with testing code

• Possibly other programmers

• Use a checklist

CMPT276 - L8 8



Code Inspection checklist (example)

• Data reference (e.g. arrays): Are all referenced variables set? Are any 
references out of bounds? User controlled references? Off-by-one 
errors?

• Initialization: Are variables declared? If not, are the defaults correct? 
Are variable declarations consistent with variable type?

• Comparison: Any confusion between greater/greater or equal to? Are 
Boolean expressions used correctly?

• Control flows: Do loops terminate? Are looping conditions changed 
during loop? 

CMPT276 - L8 9



Walkthrough

• First, a tester prepares a list of test cases

• Team examines the code by going through these test cases manually, 
discussing whether or not the code performs well in these test cases

• Compared to automated testing:
• Humans can give qualitative answers instead of quantitative ones

• Reviews can discuss efficiency and improve readability

• Can address edge cases and discuss correct response to unexpected inputs

CMPT276 - L8 10



White-box testing

• Also known as structural testing

• Derive test cases from examining the code and the requirements

• Advantage: Using knowledge of the implementation, we can derive 
thorough test suites that cover all cases

• Disadvantage: Since tests are based on specific implementation, test 
quality drops if implementation changes

• For now we focus on unit testing

CMPT276 - L8 11



White-box testing

• When can we say we have tested a piece of code completely?

• Statement coverage: Every line of code is run at least once

• Two test cases: 1 and 2 will cover all statements

• Clearly, statement coverage is not sufficient

CMPT276 - L8 12

boolean is_prime(int input) {
if (input == 1) {return false;}
if (input >= 2) {return true;}

}



Control Flow Graph

• Control-flow graph: shows the program logic around control flow 
statements (while, for, if…)

• Draw a control-flow graph of the following function:

CMPT276 - L8 13



Control Flow Graph

CMPT276 - L8 14

2

3, 4

start <= end

14

start > end

5

7

array[middle] == target

array[middle] != target

811

array[middle] < targetarray[middle] > target



Branch coverage

CMPT276 - L8 15

2

3, 4

start <= end

14

start > end

5

7

array[middle] == target

array[middle] != target

811

array[middle] < targetarray[middle] > target

• Node coverage: All nodes are executed 
at least once

• Branch coverage: All branches are 
traversed at least once

• Find 2 test cases that will cover all 
branches and nodes
• [1, 3, 4, 5, 6], find 2

• [1, 3, 4, 5, 6], find 5



Path coverage

CMPT276 - L8 16

2

3, 4

start <= end

14

start > end

5

7

array[middle] == target

array[middle] != target

811

array[middle] < targetarray[middle] > target

• A path is a list of nodes traversed by a 
test case

• [1, 3, 4, 5, 6], find 5:
• (2), (3, 4), (7), (8), (2), (3, 4), (5)

• Path coverage can help determine test 
set quality 
• Attempt to cover all paths (within a limit)

• Find and remove repetitive test cases



Path coverage

• A simple path is a path with no node repetitions, except the start and 
end can be the same

• A prime path is a simple path that cannot be lengthened any further
• This implies no prime path is a substring of another prime path

• Prime path coverage: What percentage of prime paths have been 
tested?

CMPT276 - L8 17



Path coverage

CMPT276 - L8 18

1

3-7

len(pwd) <= 20

True

len(pwd) > 20

False

9

pwd has special char

pwd does not have special chars

11

pwd does not 
have capitals

pwd contains capitals

len(pwd) < 10 len(pwd) >= 10



Path coverage

CMPT276 - L8 19

A

B

len(pwd) <= 20

T

len(pwd) > 20

F

C

pwd has special char

pwd does not have special chars

D

pwd does not 
have capitals

pwd contains capitals

len(pwd) < 10 len(pwd) >= 10

• Prime paths are:
• A, T

• A, B, F

• A, B, C, F

• A, B, C, D, F

• A, B, C, D, T

• Test cases should cover these five paths



Logic coverage: MC/DC

CMPT276 - L8 20

• Modified condition/decision coverage
• Used by e.g. NASA for critical software

• Decision coverage: Final decision needs to be T/F at least once

• Condition coverage: Each condition in a decision needs to take on 
all possible values at least once

if (total < 50 or final < 50) {

return False;

}

return True;

• Decision coverage: 
(total = 40, final = 60), (total = 60, final = 60)

• Condition coverage: 
(total = 60, final = 40), (total = 40, final = 60)



MC/DC

CMPT276 - L8 21

• MC/DC requires both decision and condition coverage, and:

• For example, if the relevant conditions are A, B, and C, then:
1. For A: 

• There needs to be two cases, A is True and A is False, where the outcome is different

• The values of B and C for those two cases needs to be the same

2. Repeat (1) and find two cases for B and C as well

Every condition in a decision has been shown to 
independently affect that decision’s outcome. 



Black-box testing

• Test cases are built only on specifications

• Without knowledge of program logic, it is harder to build complete 
test cases

• Test cases are more likely to be useful if code changes

• Special case: Pentesting

CMPT276 - L8 22



Equivalence partitioning

• Derive “invalid” and “valid” ranges for each input value
• e.g. Age 18-65: Equivalences classes are <18, [18, 65], >65
• e.g. Score 50+: Equivalence classes are <50, >= 50
• e.g. Triangle testing code, three inputs: Equivalence classes are “two or fewer 

inputs”, “three inputs”, “more than three inputs”

• If program handles possible values of inputs differently, treat them as 
different equivalence classes
• e.g. Grade displaying software: User is “student”, “teacher”, “admin” – three 

equivalence classes

• Finally: there should be one test case for each equivalence class
• A test case can cover multiple valid equivalence classes, but only one invalid 

equivalence class

CMPT276 - L8 23



Equivalence partitioning

• Example: Password code equivalence classes
• Length: < 10 is invalid, 10-20 depends, >20 is valid
• Special chars: 0 is invalid, 1+ is valid
• Capital letters: 0 is invalid, 1+ is valid

• Valid test cases:
• Length > 20
• Length 10-20, special char, capital letter

• Invalid test cases:
• Length < 10, has special char, capital
• Length 10-20, no special char, has capital
• Length 10-20, has special char, no capital

CMPT276 - L8 24



Boundary-value testing

• Experience tells us that values on the boundary are more likely to be 
wrong

• Derive boundary values from equivalence classes

• Example: Code that performs safe addition of integers
• If a+b > INT_MAX or a+b < INT_MIN, we have a buffer overflow

• Equivalence classes: a+b < INT_MIN, INT_MIN <= a+b <= INT_MAX, a+b > 
INT_MAX

• Boundary values: a+b = INT_MIN, a+b = INT_MIN – 1, a+b = INT_MAX, a+b = 
INT_MAX + 1

• We can also set a = INT_MIN and b = 0 individually, etc. 

CMPT276 - L8 25



Boundary-value testing example

• A program grades multiple-choice question solutions

• Each line is 80 characters long

• Three parts:
• First line: Always a title
• Second part: Correct answers. They are marked with a “2” in the 80th character
• Third part: Student answers. They are marked with a “3” in the 80th character

• Each line after first contains 50 correct answers (10th to 59th characters) or 
50 student answers (at most 999 questions)

• First line contains number of questions in chars 1 to 3

• Each student line starts with a 9-character identifier, up to 200 students

• Output: Students and their grades and ranks, sorted by identifier

CMPT276 - L8 26

(Myers, Sandler and Badgett)



Boundary-value testing example

CMPT276 - L8 27

(Myers, Sandler and Badgett)

Student answers 1-50

Student answers 51-100



What are the test cases?

1. Empty file

2. Missing title

3. 1-character title

4. 80-character title

5. 0-question exam

6. 1-question exam

7. 50-question exam

8. 51-question exam

9. 999-question exam

10. Number of questions is not a number

11. Number of questions is correct

12. No correct answers

13. Number of correct answers = number of questions + 1

14. Number of correct answers = number of questions - 1

CMPT276 - L8 28

15. No students

16. 1 student

17. 200 students

18. 201 students

19. Student answered 1 question but there are 2 correct answers

20. Student answered 2 questions but there is 1 correct answer

21. No student identifier

22. Non-number student identifier

23. Valid student identifier

Header/correct answers tests:

24. All students have same grade

25. All students have different grade

26. Some students have same grade

27. Student has grade of 0

28. Student has maximum grade

29. Check sort: student has lowest identifier

30. Check sort: student has highest identifier

Student answers tests:

Report tests:



Boundary-value testing example

• Program that takes (day, month, year) and returns the next date
• Year from 1 to 3000

• What are the equivalence classes?
• Month: February, 30 day Months, 31 day Months

• Day: 1-28, 29, 30, 31

• Year: 4-year leap years, 100-year non-leap years, 1000-year leap years, other 
non-leap years

• Choose tests for each of those cases

CMPT276 - L8 29



Boundary-value testing example

• Testing each type of month (year 2023):
• 1/0, 1/1, 1/31, 1/32, 2/1, 2/28, 2/29, 4/30, 4/31, 12/31

• Testing each type of day (year 2023):
• 3/15, 3/29, 3/30, 3/31

• Testing each type of year:
• 2/28/2024, 2/28/2000, 2/28/2100

• 2/29/2024, 2/29/2000, 2/29/2100

• Overall boundaries:
• 1/0/1, 1/1/1, 12/31/3000, 12/31/3000, 1/1/3001

CMPT276 - L8 30



Cause-Effect Graphing

• Equivalence classes/Boundary-value analysis cannot explain how 
inputs relate to each other
• We saw a version of this in the password example

• e.g. if number of questions * number of students > 4,000, OOM error

• First identify all causes and effects in the specification

• Then draw a cause-effect graph for the program

• Cause-effect graph helps us derive test cases

CMPT276 - L8 31



Cause-Effect Graphing

• Example Specification:

CMPT276 - L8 32

To load a save file, we first check if it is valid. The first character must 

be “A” (Autosave) or “M” (Manual save), and the second character 

must be a digit (save number). If the first character is wrong, output 

“Save error”. If the second character is wrong, output “Save number 

error”. If both are correct, load the save file. 

1 2 3

O1

O2

O3



Cause-Effect Graphing

CMPT276 - L8 33

1

2

3

12∨

O3

O1

∧

O2



Cause-Effect Graphing

CMPT276 - L8 34

1

2

3

12∨

O3

O1

∧

O2

Exclusive: a and b are 
never both true

Inclusive: a, b, c 
are never all false

One and only one 
of a and b are true

a requires b: if a is 
true, b must be true

E



Cause-Effect Graphing

• Derive the test cases from the cause-effect graph

• Procedure:

1. Choose an effect and set it to T.

2. Backtrace through the graph finding all combinations that cause the 
chosen effect to be T.
• Apply reduction strategies (next slide) to eliminate redundant combinations

3. Repeat step 1 until all effects are covered. 

CMPT276 - L8 35



Cause-Effect Graphing

• Reduction strategies for back-tracing:

1. While tracing back an OR node where the output is T, only set one 
output to 1 (e.g. FFT, FTF, TFF)

2. While tracing back an AND node where the output is F, consider all 
cases (e.g. FF, FT, TF)
a) Terminate backtracing (find only 1 case) for any T inputs. Continue 

backtracing through F’s. 

b) Terminate backtracing (find only 1 case) for all inputs if all inputs are F. 

CMPT276 - L8 36



Cause-Effect Graphing

• Example of reduction strategies

1. Set O1 to T, so X = F

2. Three cases for X = F:
1. 12 = F, 34 = F. Rule 2b: Stop backtracing; 

find only one case. (1 = F, 2 = F, 3 = T, 4 = F) 

2. 12 = F, 34 = T. Rule 2a: Backtrace through 
12. Since it is OR, there is only one case 
anyway. (1 = F, 2 = F, 3 = T, 4 = T)

3. 12 = T, 34 = F. Rule 2a: Backtrace through 
34. Since it is AND, there are 3 cases. 
• (1 = T, 2 = F, 3 = T, 4 = F), (1 = T, 2 = F, 3 = F, 4 = 

T), (1 = T, 2 = F, 3 = F, 4 = F)

CMPT276 - L8 37

1

2

3

4

12

34

X∧ O1

∧

∨



Cause-Effect Graphing

• Save file code, set O3 = T:

• Only one case for O3 = T
• (12 = T, 3 = T)

• Backtrace through 12 = T:
• (1 = T, 2 = F, 3 = T)

• (1 = F, 2 = T, 3 = T)

• (1 = T, 2 = T, 3 = T)

CMPT276 - L8 38

1

2

3

12∨

O3

O1

∧

O2

E



Cause-Effect Graphing

• Password code:
1. Length > 20
2. Has special char
3. Has capital
4. 10 <= Length <= 20

• Set OK = T
• 1 = T, S = F
• 1 = F, S = T -> 2=3=4 = T
• 1 = T, S = T

• For 1 = T, S = F
• Cases for 234: TTF, TFT, FTT, TFF, 

FTF, FFT

CMPT276 - L8 39

1

3

4

∨

OK

E

2

S
∧



Cause-Effect Graphing

• Effective way to produce logical (and algorithmic) set of test cases 
without explosion

• Should be combined with boundary value analysis for better test 
coverage

• Sometimes, the best way is “error guessing”:
• Identify common errors and generate test cases

• There is no systematic way to do so: it is based on tester experience

CMPT276 - L8 40



Unit testing (module testing)

• Unit tests focus on a single class 

• They should not connect to external databases or services

• To test a class that relies on another class, set the other class as:
• Mock class: A fake class to examine its values to determine if the test worked. 

Similar to crash-test dummy. 
• Stub class: A fake class whose properties are fixed by the tester to control the 

input.

• Example: Test the attack function of the player character
• Mock class: Check if attack has reduced HP of mock Enemy
• Stub class: Check if attack hits the enemy if it is close enough and does not hit 

the enemy if it is far enough

CMPT276 - L8 41



Integration testing

• How do we test several modules that rely 
on each other?

• Nonincremental approach: test A, B, C, D 
separately, using mocks to replace classes; 
then test them all together

• Incremental approach: Test B and D; then 
test C-D; then test A-B-C-D
• Mocks are not needed

• Helps to test tightly coupled classes

CMPT276 - L8 42

A

B C

D



Incremental testing

• Example grading code: 
A. Main code (calls B and C)
B. Reads and parses input answers and correct 

answers
C. Publishes grades and statistics to students
D. Generates statistics based on grades

1. Test B and D individually
• D: Input grades, test statistics

2. Test C-D: Test if the grades are published 
correctly, test if the statistics published by C 
match those returned by D

3. Test the whole program

CMPT276 - L8 43

A

B C

D



Higher-order testing

CMPT276 - L8 44

Requirements Acceptance Testing

Function TestingFunctional Specifications

System TestingNon-functional Specifications

Design

Code

Integration Testing

Unit Testing



System testing

• Find issues with the whole system from various non-functional 
perspectives

• Not based on the functional specifications

• Security, performance, storage, installation, reliability, etc.

• Aim to find issues, not to prove correctness
• e.g. Stress test a packet filter: raise packet rates until it fails

• e.g. Security testing: think like an attacker

CMPT276 - L8 45


	Slide 1: Software Testing
	Slide 2: Test the following code
	Slide 3: Checklist
	Slide 4: Testing mindset
	Slide 5: Software errors
	Slide 6: Causes of software errors
	Slide 7: Testing techniques
	Slide 8: Code Inspection
	Slide 9: Code Inspection checklist (example)
	Slide 10: Walkthrough
	Slide 11: White-box testing
	Slide 12: White-box testing
	Slide 13: Control Flow Graph
	Slide 14: Control Flow Graph
	Slide 15: Branch coverage
	Slide 16: Path coverage
	Slide 17: Path coverage
	Slide 18: Path coverage
	Slide 19: Path coverage
	Slide 20: Logic coverage: MC/DC
	Slide 21: MC/DC
	Slide 22: Black-box testing
	Slide 23: Equivalence partitioning
	Slide 24: Equivalence partitioning
	Slide 25: Boundary-value testing
	Slide 26: Boundary-value testing example
	Slide 27: Boundary-value testing example
	Slide 28: What are the test cases?
	Slide 29: Boundary-value testing example
	Slide 30: Boundary-value testing example
	Slide 31: Cause-Effect Graphing
	Slide 32: Cause-Effect Graphing
	Slide 33: Cause-Effect Graphing
	Slide 34: Cause-Effect Graphing
	Slide 35: Cause-Effect Graphing
	Slide 36: Cause-Effect Graphing
	Slide 37: Cause-Effect Graphing
	Slide 38: Cause-Effect Graphing
	Slide 39: Cause-Effect Graphing
	Slide 40: Cause-Effect Graphing
	Slide 41: Unit testing (module testing)
	Slide 42: Integration testing
	Slide 43: Incremental testing
	Slide 44: Higher-order testing
	Slide 45: System testing

