
7c. Design Patterns –
Behavioral Patterns

CMPT276 - L7c 1

Three types of design patterns

• Creational patterns: How do we create objects?

• Structural patterns: How do we compose large objects out of small
objects?

• Behavioral patterns: How do objects work with each other to achieve
desired behavior?

CMPT276 - L7c 2

Mediator

• Whenever an object refers to another, coupling is increased
• Rat contains a copy of Cat to run from it, Cat refers to Walls to check collision,

Cat checks Rats to see if an attack succeeds, etc…

• Coupling can prevent object reuse: If I want a copy of the Cat code for
a different game, I may have to remove all the code about Rats

• We should instead program a Mediator object that handles inter-
object communication

CMPT276 - L7c 3

Mediator

• Motivating example: A dialog box for font
selection

• Objects: Buttons, Checkboxes, TextFields…

• They are closely coupled:
• Choosing a font may disable certain weight and

slant

• Clicking the “condensed” checkbox may disable
the “bold” radio selection

• Choosing a different font may reset the weight
and slant to default

CMPT276 - L7c 4

Mediator

• Inter-object communication should pass through a Mediator:

CMPT276 - L7c 5

Mediator: Terminology

• Mediator: one object that handles all inter-object communication (of
a certain type)

• Components: communicate through the Mediator

CMPT276 - L7c 6

Mediator

• The Mediator contains objects of each component type

• Each object will also contain the Mediator but no other objects

• The Mediator only need a single notify() method
• In the text box example, whenever any dialog changes, it notifies the

Mediator

• Each object can notify the Mediator

CMPT276 - L7c 7

Mediator: Example

CMPT276 - L7c 8

public class LoginDialog implements Mediator {
void notify(Object sender, String event) {

if (sender instanceof LoginButton) {
if (SQL_check(loginUsername, loginPassword)) {

if (rememberPasswordBox.checked) //…
}
else {

time.sleep(1);
warningBox.setText(“Incorrect password.”);

}
}

}
}

Mediator: Benefits and Downsides

• Reducing coupling
• Allow you to write better classes that do not need to rely on other classes

(though they need to depend on a Mediator)

• We can subclass the Mediator to change behavior instead
• RegistrationDialog can be a different type of mediator using the same objects

• Centralize communication operations
• Easier to understand object interactions – one-to-many instead of one-to-one

• Easier to find/modify interaction code

• Downside: one complicated, monolithic class
• A “god class” is a code smell…

CMPT276 - L7c 9

Command

• If object interaction becomes complicated, direct method calling may
be too clumsy

• Document editor example: pasting text from the clipboard
• Several ways to do so: shortcut key, right click buttons, menu buttons…

• Pasting into a table and pasting into a text box may be slightly different

• Pasting as pure text and pasting with formatting

CMPT276 - L7c 10

Command

• Method calls:

• Bad for Separation of Concerns: Shortcut function needs to understand
paste

CMPT276 - L7c 11

void onKey(Key key) {
if (key.StringEquals("Ctrl+V")) {

if (!settings.formatDisabled) {
paste(clipboard, format=null);

}
if (context instanceof TableCell) {

context.expand(clipboard.length());
paste(clipboard);

}
//more possibilities…

}
}
void UnformatPasteButton.onClick() {//…}

Command

CMPT276 - L7c 12

• Unify object requests into a Command design pattern

• Caller creates a Command object and delegates command execution
to it
• Different implementations of Command can be used

• Similar to callbacks for functional programming

refactoring.guru

Command: Example

CMPT276 - L7c 13

void onKey(Key key) {
if (key.StringEquals("Ctrl+V")) {

if (PasteCommand == null) {
PasteCommand = new PasteCommand();

}
PasteCommand.execute(this);

}
}

• Client code becomes very simple

• PasteCommand.execute() can grab all necessary information from the
calling object

Command: Example

CMPT276 - L7c 14

class PasteCommand extends Command {
PasteCommand(Object context) {

if (context instanceof UnformatPasteButton) {
this.disableFormat = true;

}

}
void execute(Object context) {

if (context instanceof MainWindow) {
if (context.textSelected() != null) {

editor.removeText(context.textSelected());
}
editor.addText(clipboard, format=null);

}
//...

}
}

Command: Benefits

• Single Responsibility: All Paste code can be found in one obvious location
• Avoids unexpected bugs if code is copied multiple times into multiple locations,

possibly with modifications

• Easier to read and understand

• Open/Closed Principle: Easy to add new commands

• Command object can easily handle more complicated functionality
• Queue an action: command object has access to a command queue, adds call to the

queue with internal logic; allows deferring execution if it would be helpful

• Undo/redo: command object can store history that allows reversion

CMPT276 - L7c 15

Command: Terminology

• Command: implements an execute() method that is called by Invokers
• Concrete Command: implements Command as an interface

• Invoker: calls the Command’s execute() method

• Receiver: called by Command’s execute() method to perform the
required actions

• Client: creates and correctly sets the Command

CMPT276 - L7c 16

Command

CMPT276 - L7c 17

Iterator

• Many different ways to implement “lists” of objects:
• Array, linked list, tree (B-tree), matrix, …

• Often, caller just wants to traverse all elements of an object
• Caller does not care which implementation is being used

• An Iterator object handles this with only two method calls:
• next() – returns the next object

• boolean hasNext()

CMPT276 - L7c 18

Iterator: Java

• Java’s Collection extends from Iterable
• e.g. List, ArrayList, …

• e.g. HashMap can return a Set, which extends Collection

• Iterable has an iterator() method call that returns an Iterator

• Several options for looping over all elements:
• Using Iterator’s hasNext() and next()

• Using forEach on the Iterable

• Using a for loop with indexing on a List

CMPT276 - L7c 19

Iterator: Java

CMPT276 - L7c 20

List suits = ...;
List ranks = ...;
List sortedDeck = new ArrayList();

// BROKEN - throws NoSuchElementException!
for (Iterator i = suits.iterator(); i.hasNext();)

for (Iterator j = ranks.iterator(); j.hasNext();)
sortedDeck.add(new Card(i.next(), j.next()));

for (Suit suit : suits)
for (Rank rank : ranks)

sortedDeck.add(new Card(suit, rank));

Iterator

• If you’re writing a Tree class, you should make it implement Iterable
• next() would get the next element according to depth-first or breadth-first

• Other uses:
• Find a car over roads on a city’s map

• Check all elements of a complex shopping order for validity

• Check for updates from all channels on a messaging app

• Composites

CMPT276 - L7c 21

Iterator

• You can also implement a custom Iterator object

• e.g. use API calls to iterate over all friends on Facebook and Discord, send
them a message
• next() and hasNext() would implement the API calls
• FacebookIterator and DiscordIterator would be implementations of a SocialIterator

interface

• Advantages of Iterator:
• Client code is written for general iterators, allowing you to substitute different

iterators
• Client cannot access or change iterated objects directly
• If traversal is complicated, we achieve Single Responsibility Principle
• Simplifies iterating over multiple objects

CMPT276 - L7c 22

Memento

• How do you implement a save function?
• Similarly, how do you undo/redo?

• Naive solution: save function visits all objects and records their state
• Not all states are public or have getters

• This makes the save function dependent on all objects

• It breaks encapsulation

CMPT276 - L7c 23

Memento

• Instead, delegate the work to each saveable object

• Each saveable object is able to make a “Memento” – a snapshot that
contains its saved state

• Each saveable object should implement two public functions:
• Memento makeSnapshot()

• Creates the Memento

• void restore(Memento memento)
• Restores the object’s state to that of the Memento

CMPT276 - L7c 24

Memento: Interface

• The Memento interface can be intentionally restrictive:

• This means that other objects cannot set field values in a Memento

• Only the original object can use the Memento in the restore()
function

• Alternative implementation: Nested class

CMPT276 - L7c 25

Memento: Caretaker

• The Caretaker interacts with Mementos to support functionality
• e.g. undo, redo, save, load

• Undo/redo: Caretaker has a History object that saves all Mementos
• Every command adds a snapshot to the History

• If user undo’s, restore the snapshot’s object

• getName() is used to determine which object is being restored

• getSnapshotDate() is used to determine which is the most recent object

• Save/load: Saved file is parsed as object state from all Mementos

CMPT276 - L7c 26

Memento: Example

• In Settlers of Catan, the saveable objects are:
• Board states: robber location, buildings, yields

• Player states: resources, cards, achievements

• Game states: whose turn

• Did we forget anything?

• Using save states to cheat randomizer?

CMPT276 - L7c 27

Memento: Example (Nested class)

CMPT276 - L7c 28

class Board {
private List<Building> buildings;
private List<Player> players;
private int robberLocation;
private List<int> yields;

Memento makeSnapshot() {
return new Memento("Board", buildings, robberLocation, yields);

}
void restore(Memento boardMemento) {//setters}

private class Memento {
String memName;
List<Building> memBuildings;
List<int> memYields;
public Memento(...) {//constructor is also setters}

}
}

Memento: Example

CMPT276 - L7c 29

public class SaveLoad {
public void saveFile(File f, Board board) {

Object boardMemento = board.makeSnapshot();
//serialize boardMemento, write to file

}
public void restoreFile(File f, Board board) {

//obtain mementos from file, then
board.restore(boardMemento);

}
}

Memento: Terminology

• Originator: Board – the object that makes the Memento

• Caretaker: SaveLoad – the object that uses Mementos to support
undo/redo/save/load

CMPT276 - L7c 30

Memento: Caveats

• Take care to store Mementos correctly especially if state regards
interaction of two objects

• Manage storage size: Mementos are stored in memory too

• Command and Memento:
• Command changes the state of an object
• Memento saves state before each Command

CMPT276 - L7c 31

1. User drags a box… 2. User presses undo…

State

• Many objects can be implemented as a finite-state machine:

CMPT276 - L7c 32

Red
Light

Yellow
Light

Green
Light

30 seconds pass

3 seconds pass

Pedestrian presses button +
30 seconds pass

State

CMPT276 - L7c 33

refactoring.guru

State

• Naive implementation could include a lot of conditionals:

CMPT276 - L7c 34

DocState myDocState;
void onPublish(String userType) {

if (myDocState == DocState.DRAFT) {
if (userType.equals("user")) {

myDocState = DocState.MODERATION;
return;

}
if (userType.equals("admin")) {

myDocState = DocState.PUBLISHED;
return;

}
}
if (myDocState == DocState.MODERATION) ...

}

enum DocState {
DRAFT,
MODERATION,
PUBLISHED

}

State

• If object states become complicated, conditionals can become
spaghetti code

• To avoid this, we can implement states themselves as objects:

CMPT276 - L7c 35

State: Advantages

• Single Responsibility: Each State object is responsible for exactly its
own behavior

• State transitions and possible states are explicit and clear
• Adding a new state is easy

• Avoids large conditional statements

• Uses object composition like Bridge

CMPT276 - L7c 36

	Slide 1: 7c. Design Patterns – Behavioral Patterns
	Slide 2: Three types of design patterns
	Slide 3: Mediator
	Slide 4: Mediator
	Slide 5: Mediator
	Slide 6: Mediator: Terminology
	Slide 7: Mediator
	Slide 8: Mediator: Example
	Slide 9: Mediator: Benefits and Downsides
	Slide 10: Command
	Slide 11: Command
	Slide 12: Command
	Slide 13: Command: Example
	Slide 14: Command: Example
	Slide 15: Command: Benefits
	Slide 16: Command: Terminology
	Slide 17: Command
	Slide 18: Iterator
	Slide 19: Iterator: Java
	Slide 20: Iterator: Java
	Slide 21: Iterator
	Slide 22: Iterator
	Slide 23: Memento
	Slide 24: Memento
	Slide 25: Memento: Interface
	Slide 26: Memento: Caretaker
	Slide 27: Memento: Example
	Slide 28: Memento: Example (Nested class)
	Slide 29: Memento: Example
	Slide 30: Memento: Terminology
	Slide 31: Memento: Caveats
	Slide 32: State
	Slide 33: State
	Slide 34: State
	Slide 35: State
	Slide 36: State: Advantages

