
7b. Design Patterns –
Structural Patterns

CMPT276 - L7b 1

Three types of design patterns

• Creational patterns: How do we create objects?

• Structural patterns: How do we compose large objects out of small
objects?

• Behavioral patterns:

CMPT276 - L7b 2

Structural patterns

• Decorator – Flexibly add functionality to objects during runtime

• Flyweight – Use sharing to reduce cost of using lots of small objects

• Composite – Use a Compound class to recursively compose objects

• Adapter – Composing two objects using inheritance

• Bridge – Split a monolithic class into several hierarchies

• Proxy – Use a proxy object to control access to an existing object

CMPT276 - L7b 3

Decorator

• In some cases we may want to add potential responsibilities to a class

• Example: text view

• Whether or not a specific object will have such responsibilities is
determined during runtime

CMPT276 - L7b 4

GoF textbook

Decorator

• Some solutions?

• Add all potential functionalities to the TextView class
• This bloats the TextView code and weakens the single responsibility principle

• Use Inheritance
• TextViewWithHorizontalScrollbar, TextViewWithVerticalScrollbar,

TextViewWithHorizontalandVerticalScrollbar,
TextViewWithHorizontalScrollbarAndBorder…

• Some classes cannot be inherited…

• Decorator is a pattern that allows us to do so without modifying the
TextView class at all (or the client code that uses TextView)

CMPT276 - L7b 5

Decorator: Implementation

• First, define an interface for the class we want to add functionalities to
• TextView -> TextComponent

CMPT276 - L7b 6

public class TextView implements TextComponent {
 public void Draw() {//…}
 public void Resize() {//…}
}

interface TextComponent {
 public void Draw();
 public void Resize();
} Concrete

Component

Component

Decorator: Implementation

• A Decorator implements and is also composed of an object of that
interface

CMPT276 - L7b 7

public class TextDecorator implements TextComponent {
 private TextComponent wrappee;
 TextDecorator(TextComponent wrappee) {
 this.wrappee = wrappee;
 }
 public void Draw() {wrappee.Draw();}
 public void Resize() {wrappee.Resize();}
}

Decorator

Decorator: Implementation

• We then subclass TextDecorator to implement specific decorations

CMPT276 - L7b 8

public class BorderDecorator extends TextDecorator {
 public void Draw() {
 wrappee.Draw();
 DrawBorder();
 }
 private void DrawBorder() {//…}
}

Decorator: Terminology

• Component: Interface for object to be compounded.
(TextComponent)

• Concrete Component: Implementation of that object, will get
additional responsibilities. (TextView)

• Decorator: Base class that implements and contains the Component
to support decorating. (TextDecorator)

• Concrete Decorator: Subclass of Decorator to add a functionality.
(BorderDecorator)

CMPT276 - L7b 9

Decorator: Usage

• Client code needs to wrap object properly

CMPT276 - L7b 10

TextComponent myTextView = new TextView();
//set up potential decorators
if (max_line_size > 70) myTextView = new XScrollDecorator(myTextView);
if (line.num > 100) myTextView = new YScrollDecorator(myTextView);
if (Settings.borders_enabled) myTextView = new BorderDecorator(myTextView);

window.setTextComponent(myTextView);

Decorator: Usage

• Rest of client code can completely ignore the details of what
decorators we have
• They only care about the TextView interface

• e.g. Manipulating a blinking text cursor does not care if the TextView has a
border, scroll bar or not

• What happens when we call myTextView.Draw()?
• Recursive function calling: outermost wrapper draws, then calls next wrapper

CMPT276 - L7b 11

Decorator: Usage

CMPT276 - L7b 12

refactoring.guru

Decorator: Example #2

• Data may be encrypted, compressed, both or neither

CMPT276 - L7b 13

public class FileDataIO implements DataIO {
 public void Read(File f) {//…}
 public void Write(File f, String s) {//…}
}

interface DataIO {
 public void Read(File f);
 public void Write(File f, String s);
}

Decorator: Example #2

• What does FileDataDecorator contain?

CMPT276 - L7b 14

public class FileDataDecorator implements DataIO {
 private DataIO wrappee;
 FileDataDecorator(DataIO wrappee) {
 this.wrappee = wrappee;
 }
 public void Read(File f) {wrappee.Read();}
 public void Write(File f, String s) {wrappee.Write(f);}
}

Decorator: Implementation

• Subclass FileDataDecorator to implement EncryptDecorator

CMPT276 - L7b 15

public class EncryptDecorator extends FileDataDecorator {
 public void Write(File f, String input) {
 String encInput = EncryptString(input);
 wrappee.Write(f, encInput);
 }
 private String EncryptString(String input) {
 //deal with encryption on input, return output
 }
}

Decorator: Downsides

• Client code is fully responsible for correctly calling wrappers
• This means the client code needs to understand all wrappers

• Decryption and De-compression: Which one is first?

• Wrapper code must not affect each other
• Border clips into the scroll bar…

• Horizontal scroll bar is drawn, then vertical scroll bar is drawn and covers all
of it. Woops…

• Is myTextView instanceof TextView?

• One class for each functionality may be too much

CMPT276 - L7b 16

Flyweight

• When you have lots of instances of the same class, each object
normally contains its own (possibly expensive) resource
• e.g. each letter is its own image

• e.g. each bullet is its own 3D model

• Motivation: expensive resources, such as images and models, should
be shared
• Reduce loadtime, reduce memory consumption

• How can we do so?

CMPT276 - L7b 17

Flyweight: Design

• The first step is to distinguish between each object’s extrinsic and
intrinsic states
• Extrinsic: Outside. Other objects interact with and change extrinsic state

• Intrinsic: Inside. Internal to the object; cannot be changed by other objects.

• Example: a raindrop particle

• Flyweight: Only intrinsic states should belong to an object
• Extrinsic states should be passed around by client code

CMPT276 - L7b 18

Flyweight: Example

• Let’s imagine a big enough Cat Game that there may be hundreds of
different Rat objects being allocated

• Each rat’s graphic depends on several intrinsic states:
• How healthy the rat is (4 possibilities)

• How big the rat is (3 possibilities)

• Maximum of 12 Flyweight objects needed

• Extrinsic states:
• Rat’s position

• Rat’s attack/defense stats

CMPT276 - L7b 19

Flyweight: Example

CMPT276 - L7b 20

class RatFlyweight {
 int healthState;
 int sizeState;
 Image myGraphic;
 RatFlyweight(healthState, sizeState) {//set them}
 void paint(Graphics g, Point position) {…}
}

• RatFlyweight contains only intrinsic state, to paint it would require
passing it extrinsic state

• paint can lazy initiate and store the bitmap (check if null)

Flyweight: Example

CMPT276 - L7b 21

class Rat {
 RatFlyweight myFlyweight;
 Rat() {
 myFlyweight = RatFlyweightFactory.get(curHP, maxHP, size);
 }
 void onHit {
 //reduce HP, then…
 myFlyweight = RatFlyweightFactory.get(curHP, maxHP, size);
 repaint();
 }
}

• Rat contains a reference to a RatFlyweight

• Initiation is done using a Flyweight Factory

Flyweight: Example

CMPT276 - L7b 22

class RatFlyweightFactory {
 ArrayList<RatFlyweight> flyweights;
 RatFlyweight get(curHP, maxHP, size) {
 int healthState = (curHP*3)/maxHP;
 int sizeState = min(size/20, 2);
 RatFlyweight flyweight = flyweights.find(healthState, sizeState);
 if (flyweight == null) {
 flyweight = new RatFlyweight(healthState, sizeState);
 }
 return flyweight;
 }
}

• RatFlyweight lazy initiates Flyweights whenever necessary

Flyweight: Implementation details

• You do not want a Flyweight’s state to ever be changed

• Don’t create setters for Flyweight variables

CMPT276 - L7b 23

class RatFlyweight {
 private int healthState;
 private int sizeState;
 private Image myGraphic;
 RatFlyweight(healthState, sizeState) {//set them}
 void paint(Graphics g, Point position) {…}
}

Flyweight: when to use?

• Flyweight is a specific design pattern and you should only use it when:
• The app creates a very large number of objects

• These objects are expensive

• The expensive part is their shared state

• The advantage is reduction of storage
• Sometimes this can be traded off for computational cost

CMPT276 - L7b 24

Flyweight: Downsides

• It can be inherently unintuitive to use Flyweight because a single
object’s state is being separated into two classes
• Who will explain the reasoning to a code reader?

• Object identity tests: Is Rat1 == Rat2?

• Possible downside: computational cost
• This is why we stored the Image directly in the Flyweight

CMPT276 - L7b 25

Flyweight: Example #2 (refactoring guru)

CMPT276 - L7b 26

Composite

• Composite is useful when we want to manipulate an object that has a
tree structure

• Example:

CMPT276 - L7b 27

Robot

Body Arm1 HeadArm2

Rectangle Circle

Composite

• Composite is useful when we want to manipulate an object that has a
tree structure

• Example #2: What is the total price?

CMPT276 - L7b 28

refactoring.guru

Composite: Implementation

• Define an interface for the object to be composed

CMPT276 - L7b 29

public class Circle implements Graphic {
 int x; int y; int radius;
 //implement draw and resize…
}

interface Graphic {
 void draw();
 void resize(Point anchor, int xscale, int yscale);
}

Composite: Implementation

• Create the CompoundGraphic composite:
• CompoundGraphic performs delegation to its children

• It has basic tree operations

CMPT276 - L7b 30

public class CompoundGraphic implements Graphic {
 List<Graphic> children = new List();
 void add(Graphic graphic) {children.add(graphic);}
 void remove(Graphic graphic) {children.remove(graphic);}
 void draw() {
 for (Graphic child: children) {
 child.draw();
 }
 }
}

Composite: Terminology

• Component: Interface for object to be compounded. (Graphic)

• Composite: Object that supports tree traversal. (CompoundGraphic)

• Leaf: End object that has no children. (Circle, Rectangle)

CMPT276 - L7b 31

Composite: Downsides

• It can be difficult to define the Component interface correctly
• ApplyDiscount() to all items in a complex order. But it has a receipt…

• Should ChangeBorderColor() apply to an arrow in a CompoundGraphic?

• Specific application

CMPT276 - L7b 32

Adapter

• A simple design pattern to allow two incompatible interfaces to work
together

• Client Code has been written for Interface A (Target) and we want it
to also function for Interface B (Adaptee)

• Two versions: Object Adapter and Class Adapter

CMPT276 - L7b 33

Adapter: Object Adapter

• Uses object composition: Adapter contains the Adaptee, converts the
necessary functions to the Adaptee

• Example: a RoundPeg object fits with a RoundHole object, but how
about a SquarePeg object?

CMPT276 - L7b 34

public class RoundHole {
 int radius;
 boolean fits(RoundPeg peg) {
 return (this.radius >= peg.getRadius());
 }
}

public class RoundPeg {
 int radius;
 int getRadius() {//…};
}

public class SquarePeg {
 int width;
 int getWidth() {//…};
}

Adapter: Object Adapter

• SquarePegAdapter converts SquarePegs into RoundPegs:

CMPT276 - L7b 35

public class SquarePegAdapter extends RoundPeg {
 private SquarePeg squarePeg; //set by constructor, omitted
 int getRadius() {
 return squarePeg.getWidth() * Math.sqrt(2) / 2;
 }
}

RoundHole hole = new RoundHole(5);
SquarePeg squarePeg = new SquarePeg(5);
RoundPeg squarePegAdapter = new SquarePegAdapter(squarePeg);
hole.fits(squarePegAdapter); //returns true

Client code:

Adapter: Class Adapter

• Inherits from both Target and Adaptee to implement

• Only possible for languages with multiple inheritance!

CMPT276 - L7b 36

public class SquarePegAdapter extends RoundPeg, SquarePeg {
 private SquarePeg squarePeg;
 private RoundPeg roundPeg; //one of those set by constructor, omitted
 int getRadius() {
 if (roundPeg == null) {
 return squarePeg.getWidth() * Math.sqrt(2) / 2;
 }
 else return roundPeg.getRadius();
 }
 int getWidth() {//…}
}

Adapter: Downsides

• What is the main alternative to using Adapter?
• Changing the Adaptee’s code

• So why use Adapter instead of changing the Adaptee’s code?
• Open/Closed Principle: Changing the Adaptee’s code might break some other

code

• Adaptee’s code is possibly not changeable

• Which one: Object Adapter or Class Adapter?
• A class adapter that subclasses a lot of classes may have significant duplicate

code

CMPT276 - L7b 37

Bridge

• Separate a large monolithic class into two parts so it can be better
extended in two different directions

• Example: I have three types of Rats based on how strong they are
• WeakRat, NormalRat, BossRat

• Stronger rats can break through walls and bully weaker rats

• I have three types of Rats based on their aggressiveness
• CowardRat, TacticalRat, FierceRat

• Fiercer rats will attack more

• Now I have 9 classes with a lot of code duplication…

CMPT276 - L7b 38

Bridge (fake example)

• Using object composition, we can allow reasonable inheritance

CMPT276 - L7b 39

public class WeakRat extends Rat {
 RatAggression ratAggression;
 boolean isEscaping() {
 return ratAggression.isEscaping();
 }
 @Override
 boolean isWallEater() {
 return false; //
 }
}

Bridge: Advanced

• What should we really be separating?

• Bridge pattern: Separate the abstraction and the implementation of
a large monolithic class for better readability and flexibility

• Abstraction: Client-facing code. High-level control layer.

• Implementation: Internal code. Actual function calls.
• Note that here implementation doesn’t mean “implementing an interface”

• Example: Window GUI for different OS’s
• Make different API calls for different OS’s

• Present different types of windows for different customer preferences

CMPT276 - L7b 40

Bridge: Example

CMPT276 - L7b 41

public class WindowGUI {
 WindowImpl impl; //setters omitted
 void Open() {//…}
 void Close() {//…}
 void DrawLine(Point a) {impl.DeviceLine(a);}
 void DrawRect(Point a, Point b) {impl.DeviceRect(a, b);}
}

public class LinuxWindowImpl extends WindowImpl {
 void DeviceLine(Point a) {//…}
 void DeviceRect(Point a, Point b) {//…}
}

Bridge: Example #2

CMPT276 - L7b 42

refactoring.guru

Bridge: Terminology

• Bridge separates Abstraction and Implementation

• Subclasses of Abstraction are Refined Abstractions

• Implementations of Implementation (☹️) are called Concrete
Implementations

CMPT276 - L7b 43

Bridge: Benefits

• Large monolithic class is broken down to avoid code bloat

• Client code is exposed only to abstraction

• Implementation can be switched at runtime

• Natural solution for cross-platform programming

CMPT276 - L7b 44

Bridge: Caveats

• Implementation has to be an interface if we want more than one
concrete implementation (why?)

• Abstraction could also be an interface

• Maximize cohesion, minimize coupling

CMPT276 - L7b 45

Proxy

• A Proxy can add functionality to a class without changing the class

• Examples:
• A video player that just loads data from a server and plays it

• Add a caching service proxy so it can replay without loading data again

• A game interface for local play, but you want multiplayer
• Add a networking service proxy to pass and receive information

• Adding Logging to a class

CMPT276 - L7b 46

Proxy: Implementation

• Similar to Bridge:

CMPT276 - L7b 47

refactoring.guru

Proxy: Example (Virtual Proxy)

• Lazy (on demand) initiation of an image

CMPT276 - L7b 48

public class Image implements Graphic {
 Image image;
 String filename;
 void Draw() {
 if (image == null) {
 image = new Image();
 image.Load(fiename);
 }
 image.Draw();
 }
 void Load(String filename) {
 this.filename = filename;
 }
}

interface Graphic {
 void Draw();
 void Load(String filename);
}

Proxy: Uses

• Protection Proxy: Restrict access to service object

• Remote Proxy: Allows use of remote service object

• Caching Proxy: Cache results to save time/bandwidth, intelligently
destroy objects when unnecessary (“smart reference”)
• Can also perform object locking

CMPT276 - L7b 49

Relationships between design patterns

• A Composite object can have its functionality extended by a
Decorator
• e.g. CompoundGraphic: Decorator adds the ability to add lighting/shading

• Note that the Decorator would also need to support add, remove, child
reference

CMPT276 - L7b 50

Relationships between design patterns

• A Builder is effective for building a complex Composite object
• Example: A Composite for representing a file system

• The Builder should:
1. Read files in the directory, add them as child leaves to the Filesystem tree

2. Read folders, add them as child nodes to the Filesystem tree

3. Traverse these folders, and repeat until done

• Different OS’s can use different concrete builders

CMPT276 - L7b 51

Relationships between design patterns

• Three design patterns are implemented as ‘wrappers’ around a target
object (“wrappee”):
• Adapter produces a different interface than the wrappee, allowing client

code on a different interface to work with the wrappee

• Proxy produces the same interface, modifying existing functionality

• Decorator adds new functionality onto the interface

• Decorators and Composite can both result in recursive object
composition and function calls
• Decorators require client code to wrap things in the right order; composites

should not require additional client code

CMPT276 - L7b 52

	Slide 1: 7b. Design Patterns – Structural Patterns
	Slide 2: Three types of design patterns
	Slide 3: Structural patterns
	Slide 4: Decorator
	Slide 5: Decorator
	Slide 6: Decorator: Implementation
	Slide 7: Decorator: Implementation
	Slide 8: Decorator: Implementation
	Slide 9: Decorator: Terminology
	Slide 10: Decorator: Usage
	Slide 11: Decorator: Usage
	Slide 12: Decorator: Usage
	Slide 13: Decorator: Example #2
	Slide 14: Decorator: Example #2
	Slide 15: Decorator: Implementation
	Slide 16: Decorator: Downsides
	Slide 17: Flyweight
	Slide 18: Flyweight: Design
	Slide 19: Flyweight: Example
	Slide 20: Flyweight: Example
	Slide 21: Flyweight: Example
	Slide 22: Flyweight: Example
	Slide 23: Flyweight: Implementation details
	Slide 24: Flyweight: when to use?
	Slide 25: Flyweight: Downsides
	Slide 26: Flyweight: Example #2 (refactoring guru)
	Slide 27: Composite
	Slide 28: Composite
	Slide 29: Composite: Implementation
	Slide 30: Composite: Implementation
	Slide 31: Composite: Terminology
	Slide 32: Composite: Downsides
	Slide 33: Adapter
	Slide 34: Adapter: Object Adapter
	Slide 35: Adapter: Object Adapter
	Slide 36: Adapter: Class Adapter
	Slide 37: Adapter: Downsides
	Slide 38: Bridge
	Slide 39: Bridge (fake example)
	Slide 40: Bridge: Advanced
	Slide 41: Bridge: Example
	Slide 42: Bridge: Example #2
	Slide 43: Bridge: Terminology
	Slide 44: Bridge: Benefits
	Slide 45: Bridge: Caveats
	Slide 46: Proxy
	Slide 47: Proxy: Implementation
	Slide 48: Proxy: Example (Virtual Proxy)
	Slide 49: Proxy: Uses
	Slide 50: Relationships between design patterns
	Slide 51: Relationships between design patterns
	Slide 52: Relationships between design patterns

