
7a. Design Patterns –
Creational Patterns

CMPT276 - L7a 1

What is a design pattern?

• You will often find that new programming problems look a lot like old
problems – and you have solved them before

• Good solutions are studied as “design patterns”
• They are inherently reusable, flexible, and elegant

• Examples:
• How do you write an object that can apparently change classes during run-time?

• What should you do if you want the user to be able to restore a save state?

• How do you reduce repetitive memory usage due to object creation?

• We will study around a dozen design patterns across three categories

• Popularized by “Gang of Four” textbook (Gamma, Helm, Johnson, Vlissides)

CMPT276 - L7a 2

Starting principles (GoF)

• Interfaces are “types” – it only describes what requests it supports

• Program to an interface, not an implementation
• Interfaces are “contracts” – fixed, small, and well-defined

• Implementations can vary and can change

• Minimize instantiation of concrete classes; commit to abstract classes

• Advantage: reduce dependencies, encourage polymorphism

CMPT276 - L7a 3

Starting principles (GoF)

• Example code:

• Currently, Rat is a concrete class
• If I want to add several other types of rat…

• If I want to add other types of moving enemies…

• Currently, the Cat collision code only checks the list of rats

CMPT276 - L7a 4

public void initAnimals() {
 rats = new ArrayList<Rat>();
 for (int i = 0; i < initRatNum; i++) {
 Rat rat = new Rat(RandomPoint());
 rats.add(rat);
 }
}

Starting principles (GoF)

• Favor object composition over class inheritance

• Inheritance is useful when we want to reuse functionality, however:
• “Our experience is that designers overuse inheritance as a reuse technique”

• Composition also allows you to reuse functionality

• Inheritance necessarily breaks encapsulation

• Composition can be thought of as “black-box reuse”

CMPT276 - L7a 5

Starting principles (GoF)

• Inheritance: a BossRat is a Rat that has extra functions to fight back

• Composition: each Enemy has a DamagingType, DefendingType, and
MovingType field
• Use setters for each Enemy after creation

• A Rat has no damage, no defense, and moves

• A BossRat has damage, defense, and moves

• A Door has no damage, defense, and does not move

• A Trap has damage, no defense, and does not move

• Now we can also change their behavior during gameplay

CMPT276 - L7a 6

Three types of design patterns

• Creational patterns: How do we create objects?

• Structural patterns:

• Behavioral patterns:

CMPT276 - L7a 7

Creational patterns

• As code gets larger, we move towards composition and away from
inheritance to maintain coherence
• Large inherited classes are unwieldy

• It becomes important to know when, where, and how we are
instantiating objects
• Composing a specific type of object becomes complicated

• Creational patterns help us solve these problems

CMPT276 - L7a 8

Creational patterns

• Example: Create a Stage with a Cat and some Enemies

• We want to flexibly create many different types of stages during the
game

• Do we want to:
• startStage(numEnemies, typeEnemies, etc.) which calls Stage(numEnemies,

typeEnemies, etc.)?

• startStage() calling virtual functions e.g. Stage.createRats() to construct objects?

• startStage(StageFactory) where we use the StageFactory to construct the stage?

• Other patterns?

CMPT276 - L7a 9

Factory Method

• Suppose now we have many different types of Enemies in our game
• NormalRat, BossRat, Door, Trap, …

• These inherit from Enemy with different rules and methods

• We want to unify the Enemy creation process with a single method
• Stage setup will call this method to create enemies, depending on the

difficulty and type of stage

• But we don’t know what to create (?)
• Different types of Stages will have different Enemy properties and distribution

CMPT276 - L7a 10

Factory Method: Example

• Solution: put a CreateEnemies() method (“Factory Method”) in the
base Stage class; let inheritors define what to create

CMPT276 - L7a

public class HardStage extends Stage {
 private EnemyList CreateEnemies() {
 EnemyList stageEnemies = new EnemyList();
 for (int i = 0; i < 5; i++) {
 BossRat bossRat = new BossRat();
 bossRat.HP *= 2;
 bossRat.ATK *= 2;
 stageEnemies.addEnemy(BossRat);
 }
 }
 //define other hard stage methods, such as changing collision
rules or giving enemies regenerating health points…
} 11

Factory Method: Example

• Solution: put a CreateEnemies() method (“Factory Method”) in the
base Stage class; let inheritors define what to create

CMPT276 - L7a 12

public class BonusStage extends Stage {
 private EnemyList CreateEnemies() {
 EnemyList stageEnemies = new EnemyList();
 for (int i = 0; i < 20; i++) {
 NormalRat rat = new NormalRat();
 rat.GoldReward *= 2;
 rat.Speed /= 2;
 stageEnemies.addEnemy(rat);
 }
 }
 //define other bonus stage methods, such as disabling escape…
}

Factory Method: Terminology

• CreateEnemies() is our Factory Method

• The base Stage class can have an implementation that’s overridden,
or it may have no implementation at all

• Stage is the Creator class

• HardStage, BonusStage are ConcreteCreators

• EnemyList is the Product

CMPT276 - L7a 13

Factory Method: Advanced

• You can also have ConcreteCreators create ConcreteProducts that are
implementations of Product

• Suppose now we have HardEnemyList and BonusEnemyList as
separate implementations of the EnemyList interface
• This may be helpful if, for example, EnemyList handles logic that decides how

rats work together to escape or to attack you

• Parallelism is achieved: HardStage creates HardEnemyList, BonusStage
creates BonusEnemyList, etc.

CMPT276 - L7a 14

Factory Method: Why?

• What would we do if we didn’t use a Factory Method?

• CreateHardStageEnemies(), CreateBonusStageEnemies()…
• Bad: does not allow HardStage, BonusStage inheritance from Stage

• Stage takes care of CreateEnemies() for all cases…
• Bad: Breaks dependency inversion

• When *not* to use a Factory Method?
• If you don’t need the subclasses, i.e. you would be creating subclasses just to

inherit a Factory Method

• In our example, if we want many variant normal stages with different rat
distributions but no special rules?

CMPT276 - L7a 15

Factory Method: Diagram

CMPT276 - L7a 16

refactoring.guru

Factory Method: Example 2

• We want to develop a cross-platform UI
• Specifically, a dialog box

• It should have different style buttons if viewed through web browser
or run as a windows app

• WindowsDialog and WebDialog will be children of Dialog

CMPT276 - L7a 17

refactoring.guru

Factory Method: Example 2 (Pseudocode)

CMPT276 - L7a 18

class Dialog:
 abstract void createButton():Button

 void render():
 // Call the factory method to create a product object.
 Button okButton = createButton()
 // Now use the product.
 okButton.onClick(closeDialog)
 okButton.render()

Factory Method: Example 2 (Pseudocode)

CMPT276 - L7a 19

class WindowsDialog extends Dialog:
 Button createButton():
 return new WindowsButton()

class WebDialog extends Dialog:
 Button createButton():
 return new HTMLButton()

class WindowsButton implements Button:
 void render(a, b):
 // Render a button in Windows style.
 void onClick(f):
 // Bind a native OS click event.

class HTMLButton implements Button:
 void render(a, b):
 // Return an HTML representation of a button.
 void onClick(f):
 // Bind a web browser click event.

Factory Method: Example 2 (Pseudocode)

CMPT276 - L7a 20

(Main code that starts up dialog box)

 if (config.OS == "Windows"):
 Dialog dialog = new WindowsDialog()
else if (config.OS == "Web"):
 Dialog dialog = new WebDialog()

Abstract Factory

• An Abstract Factory allows us to create a class whose purpose is to
produce a product

• When would we need a whole class instead of just a method?
• When we need multiple methods to create a product

• These methods change depending on the product

• For our example: suppose our now more complicated stage consists
of not just enemies, but walls, exits, doors, and treasure

• We want several ways to set up these stages, depending on the
stage’s nature

CMPT276 - L7a 21

Abstract Factory: Example

• Create a StageFactory (abstract base), then inherit from that:

CMPT276 - L7a 22

public class HardStageFactory extends StageFactory {
 private EnemyList CreateEnemies() {
 HardEnemyList myEnemies = new HardEnemyList();
 //create a lot of enemies
 return HardEnemyList;
 }
 private WallList CreateWalls() {
 //create a few walls
 }
 private TrapList CreateTraps() {
 //create a lot of traps
 }
}

Abstract Factory: Example

• Create a StageFactory (abstract base), then inherit from that:

CMPT276 - L7a 23

public class EasyStageFactory extends StageFactory {
 private EnemyList CreateEnemies() {
 EasyEnemyList myEnemies = new EasyEnemyList();
 //create a few easy enemies
 return EasyEnemyList;
 }
 private WallList CreateWalls() {
 //create a few walls
 }
 private TrapList CreateTraps() {
 //create no traps
 }
}

Abstract Factory: Example

• Create a StageFactory (abstract base), then inherit from that:

CMPT276 - L7a 24

public class PuzzleStageFactory extends StageFactory {
 private EnemyList CreateEnemies() {
 //create no enemies
 }
 private WallList CreateWalls() {
 //create lots of walls
 }
 private TrapList CreateTraps() {
 //create lots of traps
 }
}

Abstract Factory: Example

• Now, our client will call the code as follows:

CMPT276 - L7a

public class GamePanel extends Panel {
 StageFactory factory;
 Stage stage;
 void SetupStage() {
 //set factory to the correct type, then…
 stage.walls = factory.CreateWalls();
 stage.enemies = factory.CreateEnemies();
 stage.traps = factory.CreateTraps();
 }
 void respawnEnemies() {
 stage.enemies = factory.CreateEnemies();
 }
}

25

Abstract Factory: Why?

• No chance of accidentally creating nonsensical Stage
• In other words, all Stages we create will be carefully designed

• Outward-facing client code is simple

• Could we do this with Factory Methods?
• Yes: HardStage itself would have CreateEnemies(), CreateTraps(), etc. but also

many other functionalities about the Stage it wants to implement
• It may be preferable to separate out the object creation methods into an

AbstractFactory for the Single-Responsibility Principle

• When not to use Abstract Factory?
• It necessarily calls for the creation of more classes, which may increase

complexity

CMPT276 - L7a 26

Abstract Factory: Example 2

• Continuation of Factory Method: Example 2

• We also want an HTML Checkbox

• It would make no sense to create something with a Windows Button
and an HTML Checkbox

CMPT276 - L7a 27

refactoring.guru

Abstract Factory: Example 2 (Pseudocode)

CMPT276 - L7a 28

class WinFactory implements GUIFactory:
 Button createButton():
 return new WinButton()
 Checkbox createCheckbox():
 return new WinCheckbox()

class HTMLFactory implements GUIFactory:
 Button createButton():
 return new HTMLButton()
 Checkbox createCheckbox():
 return new HTMLCheckbox()

interface GUIFactory:
 Button createButton()
 Checkbox createCheckbox()

Abstract Factory: Example 2 (Pseudocode)

CMPT276 - L7a 29

class Application:
 private field factory: GUIFactory
 private field button: Button
 private field checkbox: Checkbox
 Application(GUIFactory Factory):
 this.factory = factory
 void createUI():
 this.button = factory.createButton()
 this.checkbox = factory.createCheckbox()
 void paint():
 button.paint()
 checkbox.paint()

• Now, we can create a
Windows application by
constructing

Application(new WinFactory())

Abstract Factory: Terminology

• Abstract Factory: GUIFactory

• Concrete Factory: WinFactory, HTMLFactory

• Abstract Product: Button, Checkbox

• Concrete Product: WinButton, WinCheckbox, …

CMPT276 - L7a 30

Prototype

• A way to copy an object

• Could we just do:

• No, that’s not a new object

• Could we do:

CMPT276 - L7a 31

Rat Rat2 = new Rat()
Rat2 = Rat1;

Rat Rat2 = new Rat()
Rat2.Health = Rat1.Health;
Rat2.ATK = Rat1.ATK;

Prototype

• If we need to clone the Rat object, we should give it a clone method

CMPT276 - L7a 32

public class Rat {
 Rat clone() {
 Rat newRat = new Rat();
 newRat.HP = this.HP;
 newRat.MaxHP = this.maxHP;
 newRat.ATK = this.ATK;
 newRat.setLocation(this.location);
 return new Rat;
 }
}

Prototype: Advanced

• The better use case of Prototype is when you don’t exactly know
which subtype of object you will be creating

• I want the Cat to be able to press a button that creates new Enemies
on the stage

• This Button is an object, but there may be several types of buttons –
for creating easy enemies, hard enemies, a mix…

• How would other design patterns solve this problem?

CMPT276 - L7a 33

Prototype: Advanced

• Factory Method: Button has a PressButton() factory method that
creates enemies, subclasses will override it
• EasyButton would create EasyEnemy, HardButton would create HardEnemy

• Abstract Factory: extract code to create several subclasses, one for
each type of button
• EasyButtonFactory, HardButtonFactory, MixButtonFactory…

• Both require more subclasses…

• But Prototype can achieve this without extra subclasses

CMPT276 - L7a 34

Prototype: Advanced

CMPT276 - L7a 35

public class Button {
 List<Prototype> prototypes;
 int curEnemyInd = 0;
 Enemy pressButton() {
 if (curEnemyInd >= prototypes.length()) return null;
 curEnemyInd += 1;
 return prototypes[i].clone();
 }
}

• This Button is highly flexible: you can put a list of whatever enemies
you want

• Stage is responsible for creating the right enemies

Prototype: Advanced

CMPT276 - L7a 36

public class HardStageFactory extends StageFactory {
 Button createButton() {
 Button button = new Button();
 button.prototypes.add(getEnemyPrototype(“Hard”));
 button.prototypes.add(getEnemyPrototype(“Easy”));
 button.prototypes.add(getEnemyPrototype(“Hard”));
 }
}

• getEnemyPrototype() can call a Prototype Manager that keeps a
prototype of all enemies
• For example it could scale enemies by stage

Prototype: Terminology

• Prototype: Prototype (used in Button)

• Prototype Manager: can keep multiple pre-built Prototypes for use in
different parts of the code

• Client: pressButton() code that asks the Button to clone

CMPT276 - L7a 37

Prototype: Why?

• Two needs:
1. You need to copy an object

2. Your code needs to ignore what specific implementation of the object
you’re copying; maybe this is decided during run-time

• You can solve this with more subclassing, but this would increase
code complexity and decrease flexibility

• When not to use Prototype?
• When you have to clone a highly complex object with circular references

• Shallow copy vs deep copy?

• Note that clone()’s signature needs to be fixed

CMPT276 - L7a 38

Builder

• A Builder is a class for creating complex multi-step objects

• Didn’t we already have a pattern with a class for creating complex
products?
• Abstract Factory is not concerned with steps

• Different ConcreteBuilders inherit from the Builder class to produce
different products

• A Director can guide any builder

CMPT276 - L7a 39

Builder

• Our Abstract Factory example is awkward because it should’ve been
solved with the Builder pattern instead

• Here is what we might do to create a properly challenging Stage…

1. Set up several rooms, create walls for these rooms.

2. Create appropriate traps in rooms.

3. Create enemies for each room. Enemies will not spawn on walls,
doors or traps.

• These steps must be taken in order to avoid awkward generation

CMPT276 - L7a 40

Builder: Director

CMPT276 - L7a 41

public class StageDirector {
 public Stage createStage() {
 builder.createRooms();
 builder.createWalls();
 if (gameSetting.Traps == true) {
 builder.createTraps();
 }
 builder.createEnemies();
 return builder.getStage();
 }
}

Builder: ConcreteBuilder

CMPT276 - L7a 42

public class EasyStageBuilder extends Builder {
 Stage stage;
 public Stage createRooms() {
 //stage.Rooms…
 }
 public Stage createEnemies() {
 for (Room room: Rooms) {
 //room.Enemies… create few, easy enemies
 }
 }
 …
}

Builder: Terminology

• Director: StageDirector

• Builder: EasyStageBuilder

• Client: The code that calls createStage() on
a Director

CMPT276 - L7a 43

Builder: Why?

• Similar motivation to Abstract Factory, but…
• Abstract Factory builds several related objects; Builder builds one big object in

several steps

• The objects in Abstract Factory are not directly communicating to each other;
in Builder, they are part of one object and can rely on each other

• The steps in Builder may be done separately – perhaps even based on user
action or other runtime factors

• Why not use a Builder?
• Builder is necessarily more complicated than Abstract Factory to allow these

interactions, driven by a Director class

CMPT276 - L7a 44

Singleton

• Conceptually, some Classes must have one and only one instance

• Furthermore, it would be convenient to be able to access this
instance everywhere

• Examples:
• In a Maze game…

• In our Cat game…

• Trying to create a new instance should automatically return the old
instance
• Constructors won’t do this automatically

CMPT276 - L7a 45

Singleton

CMPT276 - L7a 46

class GamePanel {
 private static GamePanel gamePanel;
 private GamePanel() {
 //private constructor; cannot be called outside
 //set up mouse listeners, init animals…
 }
 public static GamePanel getInstance() {
 if (gamePanel == null) {gamePanel = new GamePanel();}
 return gamePanel;
 }
}

Singleton

• Singleton is an OOP implementation of global variables. Differences:
• A Singleton can control access; it cannot be suddenly changed by a client

• Java does not have global variables

• Why not use a Singleton?
• Singletons are inherently not encapsulated; anyone can call them anywhere

• Any code that depends on a Singleton requires understanding the state and
behavior of the Singleton
• It can be argued that global variables are inherently anti-OOP

• Needs care in multithreading

• Producing unit tests for Singleton and objects that depend on it is harder

CMPT276 - L7a 47

	Slide 1: 7a. Design Patterns – Creational Patterns
	Slide 2: What is a design pattern?
	Slide 3: Starting principles (GoF)
	Slide 4: Starting principles (GoF)
	Slide 5: Starting principles (GoF)
	Slide 6: Starting principles (GoF)
	Slide 7: Three types of design patterns
	Slide 8: Creational patterns
	Slide 9: Creational patterns
	Slide 10: Factory Method
	Slide 11: Factory Method: Example
	Slide 12: Factory Method: Example
	Slide 13: Factory Method: Terminology
	Slide 14: Factory Method: Advanced
	Slide 15: Factory Method: Why?
	Slide 16: Factory Method: Diagram
	Slide 17: Factory Method: Example 2
	Slide 18: Factory Method: Example 2 (Pseudocode)
	Slide 19: Factory Method: Example 2 (Pseudocode)
	Slide 20: Factory Method: Example 2 (Pseudocode)
	Slide 21: Abstract Factory
	Slide 22: Abstract Factory: Example
	Slide 23: Abstract Factory: Example
	Slide 24: Abstract Factory: Example
	Slide 25: Abstract Factory: Example
	Slide 26: Abstract Factory: Why?
	Slide 27: Abstract Factory: Example 2
	Slide 28: Abstract Factory: Example 2 (Pseudocode)
	Slide 29: Abstract Factory: Example 2 (Pseudocode)
	Slide 30: Abstract Factory: Terminology
	Slide 31: Prototype
	Slide 32: Prototype
	Slide 33: Prototype: Advanced
	Slide 34: Prototype: Advanced
	Slide 35: Prototype: Advanced
	Slide 36: Prototype: Advanced
	Slide 37: Prototype: Terminology
	Slide 38: Prototype: Why?
	Slide 39: Builder
	Slide 40: Builder
	Slide 41: Builder: Director
	Slide 42: Builder: ConcreteBuilder
	Slide 43: Builder: Terminology
	Slide 44: Builder: Why?
	Slide 45: Singleton
	Slide 46: Singleton
	Slide 47: Singleton

