5. Java

Characteristics of Java

* OOP-focused language — rejects procedural programming
* Enforced error catching

e Automatic garbage collection

 Javadoc documentation

* JUnit testing

* Android programming

Common pitfalls of Java

* Java cares about how code is stored in your filesystem
e Each public class is one file
* Each package is one folder

e Java is heavily OOP
* All code must be in a function
* All functions must belong to a class
* Get used to inheritance, encapsulation, constructors, etc.

e Questions about speed, performance

Hello World

class HellowWorld {
public static void main (String[] args) {
System.out.println(“Hello World”);
}

}

* Needs to be in a file called HelloWorld.java, compiled with javac
HelloWorld.java, executed with java HelloWorld

* main is a special function that indicates start of code execution
* HelloWorld is a class without a constructor
* return type void — no return

Access modifiers

* Public — accessible to anything

* Private — accessible to no other class
* Even subclasses

* Protected — accessible to packages and subclasses
» Default (“Package private”) — accessible to packages, not subclasses

4

Class constructor

class Dog {
String mood = “sad”;
public Dog() {
this.mood = “happy”;
}

public setMood(String moodString) {
mood = moodString;
}

}

* What is the value of:
* Dog.mood?
* Dog myDog = new Dog(); myDog.mood?
* Dog myDog = new Dog(); myDog.setMood(“cheerful”); myDog.mood?

4

Wrong use of Static

class Dog {
static String mood = “sad”;

public Dog() {}
public static setMood(String moodString) {

mood = moodString;

}

}

1. Dog myDogl = new Dog();

2. Dog myDog2 = new Dog();

3. myDogl.setMood(“cheerful”);
What is myDog2.mood?

4

Proper use of Static

class Dog {
final static scienceName = “canine”;
static int dogCount = 0;
public Dog() {dogCount += 1;}

}

e Static is a member of the class itself, not any of its instances

* |t can also be thought of as being shared by all its instances
* A non-final static is useful for tracking “global” state of a class

* Fully static classes are utility classes
e static final variable is a constant

4

Wrong use of Inheritance

class Animal {
String animalType;
public Animal () {//..}
public void moveCycle() {
if (animalType.equals(“dog”)) {

class Dog extends Animal {
public Dog () {

animalType = “dog”;}

public moveCycle() { }

//dog behavior.. }
}
if (animalType.equals(“cat”)) { * Dog myDog = new Dog();
//cat behavior.. * myDog.moveCycle();
}
} * This is wrong in two ways

4

Proper use of Inheritance

class Animal { class Dog extends Animal {
public Animal () {//..} public Dog () {//..}
public void moveCycle() {// public moveCycle() {
//default behavior.. //dog behavior..
} }
} }

* Inherited subclass should extend/override functionality of parent class
e Abstract method must be in abstract base class, cannot be declared
e Cannot multiple inherit in Java

4

Proper use of Inheritance

 Some rules to consider:
 Composition over Inheritance?
e Parents should never have code for subclasses
* Do notinherit if you would discard functionality
* Implementation classes vs Domain classes

class CustomerGroup extends ArrayList<Customer> {
[/
}

class CustomerGroup{
ArrayList<Customer> listCustomers;
[/

Interface Implementation

* Interface is similar in usage to abstract base class
 What are the differences?

public interface Animal { public interface GUIObject {
public void moveCycle(); public void paint();

} }

class Dog implements Animal, GUIObject {
public void moveCycle() {//..}
public void paint() {//..}

}

4

Generic types (templates)

e A class and function can be declared for generic type
* Can also bound method with extends

class numDictionary<N extends Number, V> {

private N key; private V value;

public numDictionary() {//..}

public boolean isGreater(inNum) {
return (inNum > key);

}

public void printValue() {
System.out.println(value.toString());

}

public V getValue() {
return value;

}

4

Anonymous classes

 Sometimes you want to declare and use a class at the same time
e Type of inner class

* Example: JPanel.addMouselListener takes a Mouselistener object, which
MouseAdapter implements

public class GamePanel extends JPanel {
addMouselListener(new MouseAdapter() {
public void mouseEntered(MouseEvent e) {
System.out.println(“Hello little mouse!”);
}

4

Lambda expressions

e Simplifies function calls

* Simplifies interface implementation

for (Rat rat: rats) {
rat.check caught();
}

interface Animal {
public String makeSound();

}

rats.forEach(rat ->
{rat.check caught();})

Dog dog = ()-> {return “woof”;}
System.out.println(dog.makeSound());

CMPT276 - L5

15

4

More [ambda expressions

interface Predicate<Person> {
boolean test(Person t);
}

public static void printPersonsPredicate(
List<Person> roster, Predicate<Person> tester)

{
for (Person p : roster) { . .
if (tester.test(p)) { printPersonsPredicate(
p.printPerson(); roster,
} p -> p.getGender() == Person.Sex.MALE
} && p.getAge() >= 18

} && p.getAge() <= 25

4

Principles of OOP

* How are these principles/properties implemented in Java?

e Separation of concerns

* Open/closed principle

* Liskov substitution principle

* Polymorphism: a piece of code can handle different types
* How do you program well to achieve these goals?

 Maximize cohesion

* Minimize coupling

Javadoc

e Specific documentation format that allows automatic generation of
documentation
* Document is generated as HTML
* Helps document inheritance/implementation
* Rules:
o Starts with /** in the first line, ends with */ in the last
* Put before each protected/public function, fields
e <80 characters per line, <p> for new paragraph
* Define input params with @param, return values with @return
* First sentence is always a short summary (ends with .)

4

Javadoc

. /**

e * Returns an Image object that can then be painted on the screen.

* *The url argument must specify an absolute {@link URL}. The name
* *argument is a specifier that is relative to the url argument.

e *<p>

* *This method always returns immediately, whether or not the

* *image exists. When this applet attempts to draw the image on

* *the screen, the data will be loaded. The graphics primitives

e *that draw the image will incrementally paint on the screen.

o K

« * @param url an absolute URL giving the base location of the image
 * @param name the location of the image, relative to the url argument
e * @return theimage at the specified URL

e * @see Image

o*/

Oracle

/

getimage

public Image getImage (URL url,
String name)
Returns an Image object that can then be painted on the screen. The url argument must specify an absolute URL. The name argument is a specifier that is relative to the url argument.

This method always returns immediately, whether or not the image exists. When this applet attempts to draw the image on the screen, the data will be loaded. The graphics primitives that draw
the image will incrementally paint on the screen.

Parameters:

url - an absolute URL giving the base location of the image.
name - the location of the image, relative to the url argument.
Returns:

the image at the specified URL.

See Also:
Oracle

Image

CMPT276 - L5 20

4

Javadoc

Javadoc should be an API guide, not a programming guide

* Avoid implementation details or bugs/workarounds

e Use a custom tag such as @bug for such

* Do describe dependencies
For overloaded functions, summary sentences should be different for each
function
Prefer to be clear over concise
There are many other rules/guidelines/features; Oracle has a Javadoc tutorial
with a style guide

	Slide 1: 5. Java
	Slide 2: Characteristics of Java
	Slide 3: Common pitfalls of Java
	Slide 4: Hello World
	Slide 5: Access modifiers
	Slide 6: Class constructor
	Slide 7: Wrong use of Static
	Slide 8: Proper use of Static
	Slide 9: Wrong use of Inheritance
	Slide 10: Proper use of Inheritance
	Slide 11: Proper use of Inheritance
	Slide 12: Interface Implementation
	Slide 13: Generic types (templates)
	Slide 14: Anonymous classes
	Slide 15: Lambda expressions
	Slide 16: More lambda expressions
	Slide 17: Principles of OOP
	Slide 18: Javadoc
	Slide 19: Javadoc
	Slide 20: Javadoc
	Slide 21: Javadoc

