4. Requirements engineering
and documentation

What is requirements engineering?

* A customer says what they want...

* But they do not necessarily know the right terms, or the right technology
* We need to transform that into requirements documentation through engineering

* User requirements
» Uses natural language, focuses on system service/value to users

e System requirements (functional specification)
* Detailed, technical explanations, exact feature descriptions
* Can be part of the contract itself

What is requirements engineering?

User requirements definition

The Mentcare system shall generate monthly management reports
showing the cost of drugs prescribed by each clinic during that month.

System requirements specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.

1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc.)
separate reports shall be created for each dose unit.

1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

CMPT276 - L4

Sommerville

4

Two types of system requirements

* Functional requirements: What the system does
* Features: Services provided, use cases, information
* How it responds to inputs, what are its outputs
* Can also be “what the system must not do”

* Non-functional requirements: What the system needs to be
* Constraints: time taken, delivery, technical, security
* Can be technical: reliability, memory use, storage, etc.
* Can also be organizational or external requirements

 What are some plausible non-functional requirements for the previous
system?

4

Requirements Engineering Process

* Three steps:

1. Requirements Elicitation: Understanding what the stakeholders
want

* Talking to them, involving them in design, understanding their environment

2. Requirements Specification: Understanding what we are doing
* Writing user requirements, system requirements, etc.

3. Requirements Validation: Understanding what we can do
* Check our requirements: validity, consistency, completeness, realism
* Testability is important

Requirements
elicitation

Requirements
specification

System requirements
specification and
modeling

User requirements
specfication

Business requirements
specification

Start Feasibility
System study
elicitation User
requirements .
eliatation Prototyping

Reviews

Figure 4.6 A spiral view

of the requirements
engineering process

System requirements
document

CMPT276 - L4

Requirements

validation

Sommerville

4

Requirements Elicitation

* Challenges:

« Communication gap between stakeholder and developers
* Different knowledge sets, implicit assumptions
* Unspoken factors, unspeakable factors

* Conflicting motivations
* Negotiation — convincing the stakeholder they want something different?
e Conflict between different groups, management, developers...

* Constantly changing environment

* Core skill: Communication!
* Underappreciated skill in software engineering

Types of Requirements Elicitation

* Interviewing
* Closed/open interviews
e Use springboard questions

* Observation
* Ethnography: systematic observation of work environment
* Gives better understanding of how stakeholders work
* Find out more about implicit/unspoken factors
* Field research

User Stories/Scenarios

* One way for stakeholders to express requirements
* Write out a story to explain what the system should do

* A story should:
* Set up the environment, describe the characters, explain the need
* Give certain adversarial conditions and how they are solved
* Show how characters interact
* Give events in order to express logic of system

4

Requirements document

* Introduction, glossary
e User requirements

* System requirements
 Structured requirements
» Tabular specification of requirements

 System architecture and models (next!)
e System evolution

Structured requirements

Insulin Pump/Control Software/5R5/3.3.2

Function
Description

Inputs
Source
Outputs
Destination
Action:

Requires
Precondition
Postcondition
Side effects

Compute insulin dose: Safe sugar level.

Computes the dose of insulin to be delvered when the current measured sugar level is in the
safe zone between 3 and 7 units.

Current sugar reading (r2), the previous two readings (r0 and r1).
Current sugar reading from sensor. Other readings from memory.
CompDose—the dose in insulin to be delivered.

Main control loop.

CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of
increase is decreasing. If the level is increasing and the rate of increase is increasing, then
CompDose is computed by diding the difference between the current sugar level and the
previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is
set to the minimum dose that can be delivered. (see Figure 4.14)

Two previous readings so that the rate of change of sugar level can be computed.
The insulin reservoir contains at least the maximum allowed single dose of insulin.
r0 is replaced by r1 then r1 is replaced by r2.

Mone.

CMPT276 - L4

Sommevville

11

4

Tabular requirements

Condition
Sugar level falling (r2 = r1)
Sugar level stable (r2 = r1)

Sugar level increasing and rate of increase
decreasing ((r2 — r1)< (r1 — rQ))

Sugar level increasing and rate of increase stable
or increasing r2 = r1 & ((r2 — r1) = (r1 — r0))

Action

CompDose =0
CompDose =0
CompDose =0

CompDose = round ((r2 — r1)/4)
If rounded result = 0 then

CompDose = MinimumDose

CMPT276 - L4

12

System modeling

* Unified Modeling Language

* Generalized set of rules on how to present a model

 What are the components of the system, how do they interact, how do entities interact
with the system

* Many different types of models are supported:
* Behavioral diagrams
* Use-case diagram, etc.
e Structural diagrams
e Class diagram, etc.

UML: Use-case diagram

Registered

i Customer
Web
Customer

New
Customer

<<Subsystem>>
Online Shopping

s <<include>>

Make Purchase

<<include>>,
L]

fc<Service>>

Authentication

Identity
Provider

(Actors)

Checkout

Client Register

(Use cases)

CMPT276 - L4

Credit
Payment Service

PayPal

14

UML: Use-case diagram (relationships)

<<Subsystem>>

Generalization Online Shopping

N
~
N
\

fc<Service>>
Authenticaticn

Identity
Provider

. {«:lnclude:a::-

Registered
i Customer Make Purchase

: <<include>

kA
Web . -
Customer

R Checkout Credit

s .
2 Payment Service
e

New R -
Custo mer, .
// PayPal
/,/

Include

CMPT276 - L4

15

UML Class Diagram

* Classes, their relationships, their methods and fields
e Can be used to automatically generate (startup) code

e Strict rules on presentation
 Classes, visibility, constraints, attributes,
* Six types of relationships
* Navigability
* Multiplicity

UML Class Diagram: Classes

e Each box is one class (entity)

 Top part of box is fields Slide
* Bottom part is methods + title: string {title.length() <= 50}
e Starts with: + points: list [0..*] = null
+ | Public - style
- | Private + setStyle()
| Protected + onKeyPress()
e Can have type, constraints {}, - addPoint

attribute [], default value =, etc. - deletePoint

UML Class Diagram: Relationships

Association

General relationship, e.g. A has a object
reference to B

Generalization

Equivalent to “extends” parent

Realization | —=—=======-= Equivalent to “implements” interface
Dependency | = =—=—=—=—===—=-— > A is implemented/specified by B
Aggregation Several of A make up B

Composition

Stronger aggregation

CMPT276 - L4

UML Class Diagram: Relationships

* Both sides of relationship can be specified

* Navigability: Whether or not A can easily reference B
* Draw a cross at one end if it’s not navigable % o
* A link without arrow is an association with unclear navigability

* What’s the difference between aggregation and composition?

* If B composites A, then B must be a part of exactly one A
* e.g. composition: wheels of a car, aggregation: students of a class

* If Ais deleted, then B is also deleted
* e.g. composition: pixels of a circle, aggregation: treasure chests in a room

UML Class Diagram: Multiplicity

e Specify how many of each
* One end can be unspecified
* a..b means “at least a and at most b instances”

2.7 1 PI
* * means any number l @

*acanbeO .
. . dyer)
* a by itself means “exactly a instances” uml-diagrams.org

	Slide 1: 4. Requirements engineering and documentation
	Slide 2: What is requirements engineering?
	Slide 3: What is requirements engineering?
	Slide 4: Two types of system requirements
	Slide 5: Requirements Engineering Process
	Slide 6
	Slide 7: Requirements Elicitation
	Slide 8: Types of Requirements Elicitation
	Slide 9: User Stories/Scenarios
	Slide 10: Requirements document
	Slide 11: Structured requirements
	Slide 12: Tabular requirements
	Slide 13: System modeling
	Slide 14: UML: Use-case diagram
	Slide 15: UML: Use-case diagram (relationships)
	Slide 16: UML Class Diagram
	Slide 17: UML Class Diagram: Classes
	Slide 18: UML Class Diagram: Relationships
	Slide 19: UML Class Diagram: Relationships
	Slide 20: UML Class Diagram: Multiplicity

