3. Software Development

Software Development

Days before OpenAI Days after OpenAI

Developer coding ChatGPT generates

-2 h“”g Codes - 5 min
Developer debugging Devuluper debugging
- 6 hours - 24 hours

CMPT276 - L3

Software Development Workflow

* Requirements &

* Analysis and Design
» Implementation &

* Testing @
 Deployment and Maintenance [

We will briefly introduce each topic (more in later lectures)

4

Requirements engineering

* Three components:
1. Requirements elicitation: What do the stakeholders/users want?
 Communicate with stakeholders, clarify and reach consensus
2. Requirements specification: What exactly are we doing?
* User requirements, system requirements
3. Requirements validation: Can we do these things?
* Feasibility studies, prototyping

Analysis and Design

* Architectural Design
* What classes? What methods? How do they interact?

* Security by Design

* What are the threats? Do we cause any? How do we prevent them?

e User Interface and User Interaction
* Ul mockups, diversity of needs

4

Testing

* Can be divided by who runs the tests:
* Development testing, by developers
* Unit testing, integration testing, structural (white-box) testing...

* Release testing, by testers before release
* Functional (black-box) testing, acceptance testing, ...

* User testing, by users
* Alpha testing, beta testing...

* Testing can and should be integrated into development (how?)

4

Maintenance

e Software should be seen as constantly evolving
* Dependencies are being updated
* User requirements and environments are changing
* Business reality is shifting

e Good practices minimize maintenance costs

* What is maintenance? (If you updated a piece of deprecated
software, did you create new software?)

* New bugs, new requirements and new problems will appear
* Debugging is twice as hard as coding

Software Process Models

* How do we schedule the software development workflow?
1. Waterfall model

2. Incremental development model

3. Agile

Waterfall Model

e The strawman of models

e Each step must be completed before the next (what are the problems?)

Requirements
definition

L
Y

System and

software design

A ’
Implementation
and unit testing

A

)
Integration and
system testing

L
' Y

[Operation and

maintenance

Sommerville

CMPT276 - L3

4

Incremental Development Model

* Produce an initial version as early and as soon as possible
e Start with minimal specifications and aim for release

* Repeat the software development workflow for each version
* Rethink specifications given development reality/customer feedback
* Re-design architecture with evolving specifications
» Refactor and expand codebase
* Repeated releases to track changes in customer satisfaction

CMPT276 - L3

10

4

Agile

* What really is Agile?

* Three perspectives

* Agi
* Agi
* Agi

e in the Textbook
e as Ceremony
e as Practice

4

Agile in the Textbook

* Agile values:
* Individuals and interactions over processes and tools
* Working software over comprehensive documentation
e Customer collaboration over contract negotiation
* Responding to change over following a plan

CMPT276 - L3

12

4

Agile in the Textbook

Principle Description

Customer involvement Customers should be closely involved throughout the development process.
Their role is provide and prioritize new system requirements and to evaluate
the iterations of the system.

Embrace change Expect the system requirements to change, and so design the system to
accommodate these changes.

Incremental delivery The software is developed in increments, with the customer specifying the
requirements to be included in each increment.

Maintain simplicity Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

People, not process The skills of the development team should be recognized and exploited.
Team members should be left to develop their own ways of working without
prescriptive processes.

CMPT276 - L3 13

Agile as Ceremony

* Scrum
 Sprints: a planned 2-3 week block of work
Daily stand-ups
Sprint Retrospectives
Planning for the next Spring
Guided by an Agile Coach (product manager)

* Important to measure “Velocity” (how much work can be done)

4

Agile as Ceremony

igﬂ_ip,éom

7

1Y0U PULLED ANOTHER
TASKINTO THE SPRINTS ,:;m"i':',;?.::ﬂ.,";m:oni

hr TSINOTELANNED! |

YOUREGOING TO
Y CHANGETHE TEAMS VELOCITY

CMPT276 - L3

15

Agile in Practice

* Things to consider:
* How frequent should iteration be for our product? (Is it always 2 weeks?)
* How rigid is our planning? What happens if devs need more or less time?
* Where are we getting customers involved?
* How should devs interact with each other?
 What is the potential for innovation?

* Good implementations of Agile should...
* Not be meaningless burden on developers
* Not be rigid and unresponsive to change
* Not ignore the needs of people
* Not be wholly dependent on the quality of the coach

Extreme Programming (XP)

* |[dea: minimize design and maximize agile
* “Ten minutes of design is ideal”
* YAGNI - “You Ain’t Gonna Need It”
* Frequently involve customer in process through user stories
* Test everything: unit test all functions, integrate test at end of day
* Do not plan for change

* Criticisms:
* “Big Design Up Front” saves time later

* Refactoring nightmare
* Unit/integration tests are limited

Pair Programming

* A core XP practice: two developers code together

* Share experience and knowledge — addresses critical issue of skill sets
becoming too specialized

* Limits the blame game
e Constant reviews on each other’s code

e Criticisms?

4

Scaling

 Common criticism of Agile: it does not scale
* “SAFe” (Scaled Agile Framework):

* Synchronize people, provide transparency to development process
* |Inspect and adapt

* Avoid work in progress, define deliverables in increments

* Lean product management

	Slide 1: 3. Software Development
	Slide 2: Software Development
	Slide 3: Software Development Workflow
	Slide 4: Requirements engineering
	Slide 5: Analysis and Design
	Slide 6: Testing
	Slide 7: Maintenance
	Slide 8: Software Process Models
	Slide 9: Waterfall Model
	Slide 10: Incremental Development Model
	Slide 11: Agile
	Slide 12: Agile in the Textbook
	Slide 13: Agile in the Textbook
	Slide 14: Agile as Ceremony
	Slide 15: Agile as Ceremony
	Slide 16: Agile in Practice
	Slide 17: Extreme Programming (XP)
	Slide 18: Pair Programming
	Slide 19: Scaling

