
3. Software Development

CMPT276 - L3 1



Software Development

CMPT276 - L3 2



Software Development Workflow

• Requirements 🙏

• Analysis and Design 🤔

• Implementation 📝

• Testing 🧪

• Deployment and Maintenance 🖥️

We will briefly introduce each topic (more in later lectures)

CMPT276 - L3 3



Requirements engineering

• Three components:

1. Requirements elicitation: What do the stakeholders/users want?
• Communicate with stakeholders, clarify and reach consensus

2. Requirements specification: What exactly are we doing?
• User requirements, system requirements

3. Requirements validation: Can we do these things?
• Feasibility studies, prototyping

CMPT276 - L3 4



Analysis and Design

• Architectural Design
• What classes? What methods? How do they interact?

• Security by Design
• What are the threats? Do we cause any? How do we prevent them?

• User Interface and User Interaction
• UI mockups, diversity of needs

CMPT276 - L3 5



Testing

• Can be divided by who runs the tests:
• Development testing, by developers

• Unit testing, integration testing, structural (white-box) testing…

• Release testing, by testers before release
• Functional (black-box) testing, acceptance testing, …

• User testing, by users
• Alpha testing, beta testing…

• Testing can and should be integrated into development (how?)

CMPT276 - L3 6



Maintenance

• Software should be seen as constantly evolving
• Dependencies are being updated

• User requirements and environments are changing

• Business reality is shifting

• Good practices minimize maintenance costs

• What is maintenance? (If you updated a piece of deprecated 
software, did you create new software?)

• New bugs, new requirements and new problems will appear
• Debugging is twice as hard as coding

CMPT276 - L3 7



Software Process Models

• How do we schedule the software development workflow?

1. Waterfall model

2. Incremental development model

3. Agile

CMPT276 - L3 8



Waterfall Model

• The strawman of models

• Each step must be completed before the next (what are the problems?)

Sommerville

CMPT276 - L3 9



Incremental Development Model

• Produce an initial version as early and as soon as possible

• Start with minimal specifications and aim for release

• Repeat the software development workflow for each version

• Rethink specifications given development reality/customer feedback

• Re-design architecture with evolving specifications

• Refactor and expand codebase

• Repeated releases to track changes in customer satisfaction

CMPT276 - L3 10



Agile

• What really is Agile?

• Three perspectives

• Agile in the Textbook

• Agile as Ceremony

• Agile as Practice

CMPT276 - L3 11



Agile in the Textbook

• Agile values:
• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

CMPT276 - L3 12



Agile in the Textbook

CMPT276 - L3 13



Agile as Ceremony

• Scrum
• Sprints: a planned 2-3 week block of work

• Daily stand-ups

• Sprint Retrospectives

• Planning for the next Spring

• Guided by an Agile Coach (product manager)

• Important to measure “Velocity” (how much work can be done)

CMPT276 - L3 14



Agile as Ceremony

CMPT276 - L3 15



Agile in Practice

• Things to consider:
• How frequent should iteration be for our product? (Is it always 2 weeks?)
• How rigid is our planning? What happens if devs need more or less time?
• Where are we getting customers involved?
• How should devs interact with each other?
• What is the potential for innovation?

• Good implementations of Agile should…
• Not be meaningless burden on developers
• Not be rigid and unresponsive to change
• Not ignore the needs of people
• Not be wholly dependent on the quality of the coach

CMPT276 - L3 16



Extreme Programming (XP)

• Idea: minimize design and maximize agile
• “Ten minutes of design is ideal”

• YAGNI - “You Ain’t Gonna Need It”

• Frequently involve customer in process through user stories

• Test everything: unit test all functions, integrate test at end of day

• Do not plan for change

• Criticisms:
• “Big Design Up Front” saves time later

• Refactoring nightmare

• Unit/integration tests are limited

CMPT276 - L3 17



Pair Programming

• A core XP practice: two developers code together
• Share experience and knowledge – addresses critical issue of skill sets 

becoming too specialized

• Limits the blame game

• Constant reviews on each other’s code

• Criticisms?

CMPT276 - L3 18



Scaling

• Common criticism of Agile: it does not scale

• “SAFe” (Scaled Agile Framework):
• Synchronize people, provide transparency to development process

• Inspect and adapt

• Avoid work in progress, define deliverables in increments

• Lean product management

CMPT276 - L3 19


	Slide 1: 3. Software Development
	Slide 2: Software Development
	Slide 3: Software Development Workflow
	Slide 4: Requirements engineering
	Slide 5: Analysis and Design
	Slide 6: Testing
	Slide 7: Maintenance
	Slide 8: Software Process Models
	Slide 9: Waterfall Model
	Slide 10: Incremental Development Model
	Slide 11: Agile
	Slide 12: Agile in the Textbook
	Slide 13: Agile in the Textbook
	Slide 14: Agile as Ceremony
	Slide 15: Agile as Ceremony
	Slide 16: Agile in Practice
	Slide 17: Extreme Programming (XP)
	Slide 18: Pair Programming
	Slide 19: Scaling

