
2. Git
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What is Git?

• Fully distributed version control system
• Although it’s usually used in a centralized way

• Objective: Allows collaboration between programmers working on 
the same project
• What problems would usually arise?

• Originally created by Linus Torvalds

• Other alternatives?
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What even is Git?
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Startup

• Two ways to do so:
• Go to a website (e.g. Github), create a repository there, follow instructions to 

clone it

• git init on a server, then git clone on your local machine

• git init sets up the current directory as a git repository

• git clone <repo> sets up the current directory as a git repository by 
linking it to a repository that has already been set up
• repo link can be ssh://, http(s)://, git://

• git config to set up your name and e-mail address
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The Three Trees of Git

• Three stages to push changes to remote…
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git add

• git add <file> to add a specific file to the staging area
• git add <directory> to add all files in a folder

• If you change a file after adding it, these changes would not be committed

• What types of files should be in a git repository?
• What types of files should not be in a git repository?

• The staging area is purely local

• What’s the point of the staging area? 
• You often want to divide your changes into several commits

• You want to have exact control over what changes you’re committing 
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git commit

• git commit to commit all added changes to history
• git commit -a automatically adds all changes in this directory to files that 

have been added at some point in the past, then commits
• A commit is a permanent “save point” – you can revert to any commit at any point

• Next step: write a commit comment

• What/when should you commit?
• Key word: atomic

• e.g. one bugfix = one commit, one feature = one commit

• Generally, smaller is better

• Don’t commit: unfinished code, untested code, code that doesn’t compile

CMPT276 - L2 7

Staging 
area

Commit 
history



Commit message best practices

• git commit –m “fixed bug” ❌

• First line: title (<50 characters) – what and why
• Use imperative mood. “Add support for tensorflow 2.7.0”

• Second line: empty

• Third line onwards: description, if necessary (<70 characters/line)
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Branches

• This is where things get complicated

• Branches are useful for feature implementations that require multiple commits

• git branch lists all branches

• git branch <name> creates a branch <name>

• git branch –d <name> deletes that branch

• git checkout <name> switches to that branch
• Note that creating a branch does not switch you to that branch automatically
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git merge

• You finished your feature! Now you want to merge your branch back 
into main… 

• Case 1: fast-forward merge
• git checkout main
• git merge feature155
• git branch –d feature155
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git merge

• Case 2: three-way merge
• Same commands

• Conflicts may arise… (when?)

• After fixing them, git commit to finalize the merge
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git fetch

• Everything before this was local

• Think of origin/main and main as two different branches
• Origin is set up to be the repository you cloned from

• The former is a “remote-tracking branch”, the latter is a local branch

• git fetch <remote> updates all your remote-tracking branches by 
checking a remote repository  (you can also specify one branch)
• Default <remote> is origin 

• None of your local branches are affected – use git merge if you want to update them

• git pull <remote> does a fetch, then merges all remote changes with 
your local ones, creating merge commits (or fast-forward merges)
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git fetch

• If someone has created a new branch, you will get it with git fetch, 
and you can check it out with git checkout

• This puts you in a detached HEAD state, because you should only work on 
local branches 
• git branch –b <local_name> to create the corresponding local branch

• git pull can fail (when?)
• Commit your untracked files and resolve the merge conflict

• Or, stash your untracked files (stashes are purely local and do not interact 
with commits)
• Later, you can re-apply or delete your stash

CMPT276 - L2 13



git push

• This is how you push to remote

• git push <remote>
• Can specify one branch or all branches

• Default is origin

• You can also see all remote aliases with git remote -v

• A push fails if someone has pushed to that branch after you pulled
• Exception: a fast-forward merge is possible

• Another good reason to use branches

• git push --force ignores the check (don’t do this)
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Other (very) useful tools

• git status – shows what files you haven’t added or haven’t committed
• Also helps with merge conflict resolution

• git log – shows a log of all commits before this branch
• Other branches are not shown – unless you add -a

• .gitignore – a local file that dictates what files should be ignored by 
git, such as by git add –a, git status and git stash

• git diff – show you differences between two commits, or two files, or 
two branches
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Reverting history

• #1 Rule: Don’t revert public history
• But reverting local history can be helpful for organization, making good 

commits, etc. 

• git commit --amend 
• Rewrites the previous commit with all changes made since that commit

• Logical workflow: git add, git commit, work on some more files, git add, git 
commit --amend

• git reset – undo an add, or undo a commit
• Beware: this can cause you to permanently lose changes!
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Reverting history

• git rebase - an alternative to merging

• git checkout feature155 -> git rebase main

• Then git checkout main -> git merge feature155
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Pull request

• For public collaboration projects, you won’t be able to push directly 
to the central repository

• Steps:
• Fork the central repo into your own server-side repository
• Clone the forked repo into your local machine
• Finish your work, push to your forked repo
• Make a pull request to the central repo
• Reviewer checks your code, possibly requests changes, and git pulls
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from Atlassian Bitbucket
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Project details

• You will make a board game ☺

• If your team cannot agree on a language, Java is recommended as a default

• You can implement an existing game
• You may add or remove features of this game as desired

• The following components are necessary:
• A GUI, to play and interact with the game (cannot be pure text UI)
• Different game modes, challenges and achievements
• Implementation of game rules and game elements
• Testing and debug features
• A rational AI

• Detailed submission instructions for Phase 1 to be posted
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