
2. Git

CMPT276 - L2 1

What is Git?

• Fully distributed version control system
• Although it’s usually used in a centralized way

• Objective: Allows collaboration between programmers working on
the same project
• What problems would usually arise?

• Originally created by Linus Torvalds

• Other alternatives?

CMPT276 - L2 2

What even is Git?

CMPT276 - L2 3

xkcd

Startup

• Two ways to do so:
• Go to a website (e.g. Github), create a repository there, follow instructions to

clone it

• git init on a server, then git clone on your local machine

• git init sets up the current directory as a git repository

• git clone <repo> sets up the current directory as a git repository by
linking it to a repository that has already been set up
• repo link can be ssh://, http(s)://, git://

• git config to set up your name and e-mail address

CMPT276 - L2 4

The Three Trees of Git

• Three stages to push changes to remote…

CMPT276 - L2 5

Working
directory

Staging
area

Commit
history

Remote
repository

git add git commit git push

Your working directory,
i.e. OS filesystem

File changes are
stored here after git
add before commit

The history of all
commits, allowing

reverting to any
previous commit

git pull (other people’s changes)

git add

• git add <file> to add a specific file to the staging area
• git add <directory> to add all files in a folder

• If you change a file after adding it, these changes would not be committed

• What types of files should be in a git repository?
• What types of files should not be in a git repository?

• The staging area is purely local

• What’s the point of the staging area?
• You often want to divide your changes into several commits

• You want to have exact control over what changes you’re committing

CMPT276 - L2 6

Working
directory

Staging
area

git commit

• git commit to commit all added changes to history
• git commit -a automatically adds all changes in this directory to files that

have been added at some point in the past, then commits
• A commit is a permanent “save point” – you can revert to any commit at any point

• Next step: write a commit comment

• What/when should you commit?
• Key word: atomic

• e.g. one bugfix = one commit, one feature = one commit

• Generally, smaller is better

• Don’t commit: unfinished code, untested code, code that doesn’t compile

CMPT276 - L2 7

Staging
area

Commit
history

Commit message best practices

• git commit –m “fixed bug” ❌

• First line: title (<50 characters) – what and why
• Use imperative mood. “Add support for tensorflow 2.7.0”

• Second line: empty

• Third line onwards: description, if necessary (<70 characters/line)

CMPT276 - L2 8

Branches

• This is where things get complicated

• Branches are useful for feature implementations that require multiple commits

• git branch lists all branches

• git branch <name> creates a branch <name>

• git branch –d <name> deletes that branch

• git checkout <name> switches to that branch
• Note that creating a branch does not switch you to that branch automatically

CMPT276 - L2 9

New branch (created with git branch)

Main branch (the default branch)

git merge

• You finished your feature! Now you want to merge your branch back
into main…

• Case 1: fast-forward merge
• git checkout main
• git merge feature155
• git branch –d feature155

CMPT276 - L2 10

“feature155”

“main” “main”

git merge

• Case 2: three-way merge
• Same commands

• Conflicts may arise… (when?)

• After fixing them, git commit to finalize the merge

CMPT276 - L2 11

“feature155”

“main” “main”

git fetch

• Everything before this was local

• Think of origin/main and main as two different branches
• Origin is set up to be the repository you cloned from

• The former is a “remote-tracking branch”, the latter is a local branch

• git fetch <remote> updates all your remote-tracking branches by
checking a remote repository (you can also specify one branch)
• Default <remote> is origin

• None of your local branches are affected – use git merge if you want to update them

• git pull <remote> does a fetch, then merges all remote changes with
your local ones, creating merge commits (or fast-forward merges)

CMPT276 - L2 12

git fetch

• If someone has created a new branch, you will get it with git fetch,
and you can check it out with git checkout

• This puts you in a detached HEAD state, because you should only work on
local branches
• git branch –b <local_name> to create the corresponding local branch

• git pull can fail (when?)
• Commit your untracked files and resolve the merge conflict

• Or, stash your untracked files (stashes are purely local and do not interact
with commits)
• Later, you can re-apply or delete your stash

CMPT276 - L2 13

git push

• This is how you push to remote

• git push <remote>
• Can specify one branch or all branches

• Default is origin

• You can also see all remote aliases with git remote -v

• A push fails if someone has pushed to that branch after you pulled
• Exception: a fast-forward merge is possible

• Another good reason to use branches

• git push --force ignores the check (don’t do this)

CMPT276 - L2 14

Other (very) useful tools

• git status – shows what files you haven’t added or haven’t committed
• Also helps with merge conflict resolution

• git log – shows a log of all commits before this branch
• Other branches are not shown – unless you add -a

• .gitignore – a local file that dictates what files should be ignored by
git, such as by git add –a, git status and git stash

• git diff – show you differences between two commits, or two files, or
two branches

CMPT276 - L2 15

Reverting history

• #1 Rule: Don’t revert public history
• But reverting local history can be helpful for organization, making good

commits, etc.

• git commit --amend
• Rewrites the previous commit with all changes made since that commit

• Logical workflow: git add, git commit, work on some more files, git add, git
commit --amend

• git reset – undo an add, or undo a commit
• Beware: this can cause you to permanently lose changes!

CMPT276 - L2 16

Reverting history

• git rebase - an alternative to merging

• git checkout feature155 -> git rebase main

• Then git checkout main -> git merge feature155

CMPT276 - L2 17

“feature155”

“main”
“main” “feature155”

“main”

Pull request

• For public collaboration projects, you won’t be able to push directly
to the central repository

• Steps:
• Fork the central repo into your own server-side repository
• Clone the forked repo into your local machine
• Finish your work, push to your forked repo
• Make a pull request to the central repo
• Reviewer checks your code, possibly requests changes, and git pulls

CMPT276 - L2 18

Your forked repo Your local repo
git push

Central repo
Pull request

from Atlassian Bitbucket
CMPT276 - L2 19

Project details

• You will make a board game ☺

• If your team cannot agree on a language, Java is recommended as a default

• You can implement an existing game
• You may add or remove features of this game as desired

• The following components are necessary:
• A GUI, to play and interact with the game (cannot be pure text UI)
• Different game modes, challenges and achievements
• Implementation of game rules and game elements
• Testing and debug features
• A rational AI

• Detailed submission instructions for Phase 1 to be posted

CMPT276 - L2 20

	Slide 1: 2. Git
	Slide 2: What is Git?
	Slide 3: What even is Git?
	Slide 4: Startup
	Slide 5: The Three Trees of Git
	Slide 6: git add
	Slide 7: git commit
	Slide 8: Commit message best practices
	Slide 9: Branches
	Slide 10: git merge
	Slide 11: git merge
	Slide 12: git fetch
	Slide 13: git fetch
	Slide 14: git push
	Slide 15: Other (very) useful tools
	Slide 16: Reverting history
	Slide 17: Reverting history
	Slide 18: Pull request
	Slide 19
	Slide 20: Project details

