Problem 1

Define

$$
J_{1}(\boldsymbol{w})=|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}|^{2}+\lambda_{2}|\boldsymbol{w}|^{2}+\lambda_{1}|\boldsymbol{w}|_{1}
$$

and

$$
J_{2}(\boldsymbol{w})=|\tilde{\boldsymbol{y}}-\tilde{\boldsymbol{X}} \boldsymbol{w}|^{2}+c \lambda_{1}|\boldsymbol{w}|_{1}
$$

where $c=\left(1+\lambda_{2}\right)^{-\frac{1}{2}}$ and

$$
\tilde{\boldsymbol{X}}=c\binom{\boldsymbol{X}}{\sqrt{\lambda_{2}} \boldsymbol{I}_{d}}, \tilde{\boldsymbol{y}}=\binom{\boldsymbol{y}}{\mathbf{0}_{d \times 1}}
$$

Show

$$
\arg \min J_{1}(\boldsymbol{w})=c\left(\arg \min J_{2}(\boldsymbol{w})\right)
$$

i.e. $J_{1}(c \boldsymbol{w})=J_{2}(\boldsymbol{w})$ and hence that one can solve an elastic net problem using a lasso solver on modified data.

Problem 2

Let $R S S(w)=\|X w-y\|_{2}^{2}$ be the residual sum of squares.
a. Show that

$$
\begin{aligned}
\frac{\partial}{\partial w_{k}} R S S(w) & =a_{k} w_{k}-c_{k} \\
a_{k} & =2 \sum_{i=1}^{n} x_{i k}^{2}=2\left\|x_{:, k}\right\|^{2} \\
c_{k} & =2 \sum_{i=1}^{n} x_{i k}\left(y_{i}-w_{-k}^{T} x_{i,-k}\right)=2 x_{:, k}^{T} r_{k}
\end{aligned}
$$

where $w_{-k}=w$ without component $k, x_{i,-k}$ is x_{i} without component k, and $r_{k}=y-w_{-k}^{T} x_{:,-k}$ is the residual due to using all the features except feature k. Hint: Partition the weights into those involving k and those not involving k.
b. Show that if $\frac{\partial}{\partial w_{k}} R S S(w)=0$, then

$$
\hat{w}_{k}=\frac{x_{:, k}^{T} r_{k}}{\left\|x_{i, k}\right\|^{2}}
$$

Hence when we sequentially add features, the optimal weight for feature k is computed by computing orthogonally projecting $x_{:, k}$ onto the current residual.

