
CMPT 300 Processes Page 1

Today’s Plan

Today’s topics:

ì From last time:
ì Virtual Machines

ì The Process Concept

ì Process States

ì Process Control Blocks

ì Precedence & Concurrency

ì Race Conditions

Last time:

ì (Almost)
finished
introduction

Upcoming:

ì Assignment 1

CMPT 300 Processes Page 2

Processes

ì Process Concept

ì Concurrency

ì Race Conditions

ì Process Creation

ì Interprocess Communication

ì Examples of IPC Systems

CMPT 300 Processes Page 3

What is a Process?

ì Fundamental building block of modern operating
systems is the notion of a process

ì A process is a running program (a program in
execution). This includes:
ì All programs running on behalf of users (application

programs)
ì Some operating system functions are also implemented

using processes

ì A process is a single thread of execution under
control of the OS

CMPT 300 Processes Page 4

Process Details

ì Much of the functionality of a modern OS is the work
required to manage processes

ì OS may have hundreds of processes active at the same
time
ì Although only a small number of them executing at a given

time on a multi-core CPU system

ì Processes are not found in the operating system kernel

CMPT 300 Processes Page 5

What is not a Process?

ì A program by itself is not a process

ì There is no one-to-one correspondence between
programs and processes
ì E.g. there may be 10 people using emacs at the same

time, i.e. 10 processes running emacs, but only one copy
of the emacs program on disk

ì E.g. there may be many programs on disk that are not
executing at the present time à these are not processes!

ì Programs are passive entities, while processes are active

CMPT 300 Processes Page 6

A Process in Memory

ì Text: the instructions that make
up the program

ì Data: the data the program uses

ì Heap: used for dynamic memory

ì Stack: used for function calls

CMPT 300 Processes Page 7

Process States

Modern OSes allow for more than one process to exist at
the same time, and since there is usually only one
processor, processes must assume different states during
their lifetime:
ì Running: currently being executed by the processor

ì Blocked: waiting for some external event, e.g. I/O
operation

ì Ready: waiting for a turn at the processor

ì Deadlocked: waiting for an event that will never happen

ì OS must recognize this and deal with it

CMPT 300 Processes Page 8

Process State Diagram

READY RUNNING

BLOCKED DEADLOCKED

CMPT 300 Processes Page 9

Process Control Block (PCB)

Information associated with each process

ì Process state

ì Program counter

ì CPU registers

ì CPU scheduling information

ì Memory-management information

ì Accounting information

ì I/O status information

CMPT 300 Processes Page 10

Process Control Block (PCB)

CMPT 300 Processes Page 11

Process Model of an OS

ì Modern OSes are a collection of cooperating processes
that run on top of (and are supported by) an OS kernel

ì The kernel is responsible for the following services:
ì Creation and destruction of processes
ì CPU scheduling, memory management, device management
ì Process synchronization tools
ì Process communication tools

ì OS services provided by the kernel are invoked using
system calls

CMPT 300 Processes Page 12

Precedence & Concurrency

ì Logical concurrency is achieved on a uni-processor system
by quickly switching the CPU from one process to the next

ì Consider the following two processes which share data:
P1: A = B + C

P2: D = A * 2

ì P1 must precede P2!

ì In general, the issues of precedence and concurrency are
the same for logical or physical concurrency

ì When is it okay for two ore more processes to execute
concurrently so that we always get consistent results?
ì Depends on what data is shared between the processes

CMPT 300 Processes Page 13

Race Conditions

Consider the following example, where P1 and P2 share
all data, and we alternate executing one line of code
between P1 and P2

P1: z = 0; P2: z = 1;

B = 1; B = 2;

C = 2 + B; D = z + B;

ì If P1 goes first:

ì If P2 goes first:

CMPT 300 Processes Page 14

Race Conditions

ì When there is a dependency on the exact execution
order of statements between two or more processes,
it is called a race condition

ì Race conditions occur because of the relationships
between the read and write sets of the processes

CMPT 300 Processes Page 15

Read & Write Sets

ì A process’ read set is the set of all data in RAM,
secondary storage, or other existent data that a
process reads (uses during execution)
ì Read set for process P denoted R(P)

ì A process’ write set is the set of all data that a process
writes (changes during execution)
ì Write set for process P denoted W(P)

ì E.g.:P1: z = x + y P2: a = a + 3

CMPT 300 Processes Page 16

Bernstein’s Concurrency Conditions

ì Used to dictate when two processes are able to execute
concurrently, and always produce consistent results

ì Bernstein’s Concurrency Conditions are as follows:
In order for two processes P1 and P2 to run concurrently, the
following 3 conditions must hold:
1. R(P1) cannot intersect W(P2)

2. W(P1) cannot intersect R(P2)

3. W(P1) cannot intersect W(P2)
ì If two processes do not satisfy BCC, then they are said to have a

critical section problem

ì The critical sections are the sections of code that cause violation of
BCC

