
CMPT 300 Operating System Structures Page 1

Today’s Plan

Today’s topics:

ì Operating System Design and
Implementation

ì Operating System Structure

ì Virtual Machines

ì Introduction to Processes

Upcoming:

ì Quiz 1
Monday!

ì Assignment 1

Last time:

ì Operating
system duties

CMPT 300 Operating System Structures Page 2

System Programs

ì System programs provide a convenient environment
for program development and execution. Examples:
ì File manipulation
ì Status information
ì File modification
ì Programming language support
ì Program loading and execution
ì Communications
ì Application programs

ì Most users’ view of the operating system is defined by
system programs, not the actual system calls.

CMPT 300 Operating System Structures Page 3

Example: The Linker and Loader

CMPT 300 Operating System Structures Page 4

Operating System Design &
Implementation

ì User goals – operating system should be:
ì Convenient to use, easy to learn

ì Reliable, safe, and fast

ì System goals – operating system should be:
ì Easy to design, implement, and maintain

ì Flexible, reliable, error-free

ì Efficient!

CMPT 300 Operating System Structures Page 5

Operating System Design &
Implementation

ì Important principle to separate

ì Policy: What will be done?

ì Mechanism: How to do it?

ì Why have this separation?
ì Allows maximum flexibility if either policy or mechanism

need to be changed later

CMPT 300 Operating System Structures Page 6

Operating System Implementation

ì Much variation
ì Early OSes in assembly language
ì Then system programming languages like Algol, PL/1
ì Now C, C++

ì Actually usually a mix of languages
ì Lowest levels in assembly
ì Main body in C
ì Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts

ì High-level languages easier to port to other hardware
ì But slower

ì Emulation can allow an OS to run on non-native hardware

CMPT 300 Operating System Structures Page 7

Simple Structure

ì MS-DOS – written to
provide the most
functionality in the least
space
ì Although MS-DOS has some

structure, its interfaces and
levels of functionality are
not well separated

CMPT 300 Operating System Structures Page 8

Layered Approach

ì The operating system is divided into a number of layers (levels), each
built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

ì With modularity, layers are selected
such that each uses functions
and services of only lower-level
layers

CMPT 300 Operating System Structures Page 9

UNIX

ì UNIX – limited by hardware functionality, the original
UNIX operating system was a monolithic kernel.

ì The UNIX OS consists of two separable parts:
ì Systems programs

ì The kernel

ì Consists of everything below the system-call interface and
above the physical hardware

ì Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

CMPT 300 Operating System Structures Page 10

Traditional UNIX Structure

CMPT 300 Operating System Structures Page 11

Microkernel System Structure

ì Moves as much from the kernel into “user” space

ì Benefits:
ì Easier to extend a microkernel

ì Easier to port the OS to new architectures

ì More reliable

ì More secure

ì Detriments:
ì Performance overhead of user space to kernel space

communication

CMPT 300 Operating System Structures Page 12

Monolithic vs. Microkernel Structure

ì Most popular modern OSes are actually hybrids of the
monolithic and microkernel structures:
ì Many functions are

moved into “user” space

ì Some are kept in the
kernel for performance
reasons

ì E.g. Mac OS/X structure:

CMPT 300 Operating System Structures Page 13

Virtual Machines

ì A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the
operating system kernel as though they were all
hardware

ì A virtual machine provides an interface identical to
the underlying hardware

ì The operating system host creates the illusion that a
process has its own processor and memory

ì Each guest is provided with a (virtual) copy of
underlying computer

CMPT 300 Operating System Structures Page 14

Virtual Machines

(a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

CMPT 300 Operating System Structures Page 15

VMWare Architecture

CMPT 300 Operating System Structures Page 16

Java Virtual Machine

CMPT 300 Operating System Structures Page 17

Operating-System Debugging

ì Debugging is finding and fixing errors, or bugs

ì OSes generate log files containing error information

ì Failure of an application can generate core dump file
capturing memory of the process

ì Operating system failure can generate crash dump file
containing kernel memory

ì Kernighan’s Law: “Debugging is twice as hard as
writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

CMPT 300 Operating System Structures Page 18

Processes

ì Process Concept

ì Concurrency

ì Race Conditions

ì Process Creation

ì Interprocess Communication

ì Examples of IPC Systems

CMPT 300 Operating System Structures Page 19

What is a Process?

ì Fundamental building block of modern operating
systems is the notion of a process

ì A process is a running program (a program in
execution). This includes:
ì All programs running on behalf of users (application

programs)
ì Some operating system functions are also implemented

using processes

ì A process is a single thread of execution under
control of the OS

CMPT 300 Operating System Structures Page 20

Process Details

ì Much of the functionality of a modern OS is the work
required to manage processes

ì OS may have hundreds of processes active at the same
time
ì Although only a small number of them executing at a given

time on a multi-core CPU system

ì Processes are not found in the operating system kernel

CMPT 300 Operating System Structures Page 21

What is not a Process?

ì A program by itself is not a process

ì There is no one-to-one correspondence between
programs and processes
ì E.g. there may be 10 people using emacs at the same

time, i.e. 10 processes running emacs, but only one copy
of the emacs program on disk

ì E.g. there may be many programs on disk that are not
executing at the present time à these are not processes!

ì Programs are passive entities, while processes are active

CMPT 300 Operating System Structures Page 22

A Process in Memory

ì Text: the instructions that make
up the program

ì Data: the data the program uses

ì Heap: used for dynamic memory

ì Stack: used for function calls

