CMPT 300 Operating System Structures Page 1

Today's Plan

Upcoming: Today’s topics:

Assignment 1 From last time:

2 OS Services

? System Call Implementation

Last time: Operating System Design and

: Implementation
Operating P

system duties Operating System Structure

Virtual Machines

CMPT 300

Operating System Structures Page 2

System Programs

System programs provide a convenient environment
for program development and execution. Examples:

e

A N N NN DN

File manipulation

Status information

File modification

Programming language support
Program loading and execution
Communications

Application programs

Most users’ view of the operating system is defined by
system programs, not the actual system calls.

CMPT 300 Operating System Structures Page 3

Example: The Linker and Loader

source main .C

program

¢ ¢ generates

@ main.o
le

“‘A gcc -o main main.o -1m
i i generates

main

executable
file

v

i

dynamically
linked
libraries

program
in memory

CMPT 300 Operating System Structures

Page 4

Operating System Design &

Implementation

User goals — operating system should be:
Convenient to use, easy to learn

72 Reliable, safe, and fast

System goals — operating system should be:
? Easy to design, implement, and maintain
? Flexible, reliable, error-free

72 Efficient!

CMPT 300 Operating System Structures Page 5

Operating System Design &

Implementation

Important principle to separate

2 Policy: What will be done?

2 Mechanism: How to do it?

Why have this separation?

2 Allows maximum flexibility if either policy or mechanism
need to be changed later

CMPT 300 Operating System Structures Page 6

Operatfing System Implementation

Much variation

2 Early OSes in assembly language

72 Then system programming languages like Algol, PL/1
72 Now(C, C++

Actually usually a mix of languages

2 Lowest levels in assembly

2 Main bodyin C

2 Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

High-level languages easier to port to other hardware
72 Butslower

Emulation can allow an OS to run on non-native hardware

CMPT 300 Operating System Structures Page 7

Simple Structure

MS-DOS — written to
provide the most
functionality in the least
space

?2 Although MS-DOS has some
structure, its interfaces and

levels of functionality are
not well separated

‘ application program

resident system program

MS-DOS device driversg

ROM BIOS device drivers b

CMPT 300 Operating System Structures Page 8

Layered Approach

The operating system is divided into a number of layers (levels), each
built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

layer N
user interface

With modularity, layers are selected
such that each uses functions

and services of only lower-level
layers

layer O
hardware

CMPT 300

Operating System Structures

UNIX — limited by hardware functionality, the original
UNIX operating system was a monolithic kernel.

The UNIX OS consists of two separable parts:

A Systems programs

2 The kernel

Consists of everything below the system-call interface and
above the physical hardware

Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

CMPT 300 Operating System Structures Page 10

Traditional UNIX Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

L, signals terminal file system CPU scheduling
g) handling swapping block /O page replacement
< character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

CMPT 300 Operating System Structures Page 11

Microkernel System Structure

Moves as much from the kernel into “user” space

Benefits:

7 Easier to extend a microkernel

? Easier to port the OS to new architectures
2 More reliable

2 More secure

Detriments:

? Performance overhead of user space to kernel space
communication

CMPT 300 Operating System Structures

Page 12

Monolithic vs. Microkernel Structure

Most popular modern OSes are actually hybrids of the
monolithic and microkernel structures:

72 Many functions are
moved into “user” space

2 Some are kept in the
kernel for performance
reasons

A E.g. Mac OS/X structure:

kernel
environment

application environments
and common services

P

BSD

Mach

CMPT 300 Operating System Structures Page 13

Virtual Machines

A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the
operating system kernel as though they were all
hardware

A virtual machine provides an interface identical to
the underlying hardware

The operating system host creates the illusion that a
process has its own processor and memory

Each guest is provided with a (virtual) copy of
underlying computer

CMPT 300 Operating System Structures Page 14

Virtual Machines

processes
processes
processes processes
u programming/ kﬁ ﬂ l
. ernel kernel kernel
/ interface
ketel VM1 VM2 VM3
virtual-machine
implementation
hardware TR

(a) (b)

(a) Nonvirtual machine (b) virtual machine

CMPT 300 Operating System Structures Page 15

VMWare Architecture

application application application application

guest operating guest operating guest operating
system system system

(free BSD) (Windows NT) (Windows XP)

virtual CPU virtual CPU virtual CPU

virtual memory virtual memory virtual memory

virtual devices virtual devices virtual devices

virtualization layer

, l

host operating system
(Linux)

hardware

CPU memory I/O devices

CMPT 300 Operating System Structures Page 16

Java Virtual Machine

Java program Java API
. -—-d- class loader -t-- :
.class files i g .class files

!

Java
Interpreter

\ 4

host system
(Windows, Linux, etc.)

CMPT 300 Operating System Structures Page 17

Operating-System Debugging

Debugging is finding and fixing errors, or bugs
OSes generate log files containing error information

Failure of an application can generate core dump file
capturing memory of the process

Operating system failure can generate crash dump file
containing kernel memory

Kernighan’s Law: “Debugging is twice as hard as
writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

