
CMPT 300 Operating System Structures Page 1

Today’s Plan

Today’s topics:

ì File/Secondary Storage management

ì I/O System

ì Protection/security

ì Computing environments

ì Operating System Services

ì User Operating System Interface

ì System Calls

Last time:

ì Operating
system duties

Upcoming:

ì Assignment 1

CMPT 300 Operating System Structures Page 2

System Components –
File Management

ì A file is a collection of related information defined by
its creator.

ì The operating system is responsible for the following
activities in connection with file management:
ì File/directory creation and deletion

ì Support of primitives for manipulating files and directories

ì Access control available on most systems

ì Mapping files onto secondary storage

ì File backup on stable (non-volatile) storage media

CMPT 300 Operating System Structures Page 3

System Components –
Secondary Storage Management

ì Since main memory (primary storage) is volatile and too
small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

ì Most modern computer systems use drives as the
principle storage medium, for both programs and data.

ì The operating system is responsible for the following
activities in connection with disk management:
ì Free space management

ì Storage allocation

ì Disk scheduling

CMPT 300 Operating System Structures Page 4

Performance of Various Levels of Storage

ì Movement between levels of storage hierarchy can be
explicit or implicit

CMPT 300 Operating System Structures Page 5

Migration of Integer A from Disk to Register

ì Multitasking environments must be careful to use
most recent value, no matter where it is stored in the
storage hierarchy

ì Multiprocessor environment must provide cache
coherency in hardware such that all CPUs have the
most recent value in their cache

ì Distributed environment situation even more complex
ì Several copies of a datum can exist

CMPT 300 Operating System Structures Page 6

System Components –
I/O System Management

ì One purpose of OS is to hide peculiarities of hardware
devices from the user

The I/O system consists of:

ì A buffer-caching system

ì A general device driver interface
ì Device driver: a set of interrupt handler/subroutines for a

device controller

ì Drivers for specific hardware devices

CMPT 300 Operating System Structures Page 7

Protection and Security

ì Protection – any mechanism for controlling access of
processes or users to resources defined by the OS

ì Security – defense of the system against internal and
external attacks
ì E.g. denial-of-service attacks, worms, viruses, identity theft,

theft of service, etc.

CMPT 300 Operating System Structures Page 8

Protection and Security

ì Systems generally first distinguish among users, to
determine who can do what
ì User identities (user IDs, security IDs) include name and

associated number, one per user
ì User ID then associated with all files, processes of that user

to determine access control
ì Group identifier (group ID) allows set of users to be defined

and controls managed, then also associated with each
process, file

ì Privilege escalation allows user to change to effective ID
with more rights

CMPT 300 Operating System Structures Page 9

Computing Environments –
Traditional & Mobile

ì Traditional
ì Stand-alone general-purpose computers

ì Range from network computers (thin clients) to powerful
laptops/desktops

ì Mobile
ì Handheld smartphones, tablets, etc.

ì OS must support many features enabled by sensors (GPS,
gyroscope, cameras)

ì Allows for new types of apps like augmented reality

CMPT 300 Operating System Structures Page 10

Computing Environments –
Client Server

ì Client-Server Computing
ì Dumb terminals supplanted by smart PCs

ì Many systems now servers, responding to requests
generated by clients

ì Compute-server system provides an interface to client to
request services (e.g. database)

ì File-server system provides an interface for clients
to store and retrieve files

Server Network

client
desktop

client
laptop

client
smartphone

CMPT 300 Operating System Structures Page 11

Peer-to-Peer Computing

ì Another model for a distributed system

ì P2P does not distinguish clients and servers
ì All nodes are considered peers

ì May each act as client, server, or both

ì Node must join P2P network
ì Registers its service with central lookup

service on network, or
ì Broadcast request for service and respond

to requests for service via discovery protocol
ì Examples include Napster, Gnutella, and VOIP services

client

clientclient

client client

CMPT 300 Operating System Structures Page 12

Computing Environments –
Cloud Computing

ì Delivers computing, storage, and apps as a service
across a network
ì E.g. Amazon EC2 has thousands of servers, millions of virtual

machines, petabytes of storage available via the internet –
pay based on usage

ì Public and private clouds
ì Software as a service (SaaS) for applications
ì Platform as a service (PaaS) for entire software stack (e.g.

database server)
ì Infrastructure as a service (IaaS) for servers or storage
ì Load balancers spread traffic across many servers

CMPT 300 Operating System Structures Page 13

Open-Source Operating Systems

ì Operating systems made available in source-code
format rather than just binary closed-source

ì Counter to the copy protection and Digital Rights
Management (DRM) movement

ì Started by Free Software Foundation (FSF), which has
“copyleft” GNU Public License (GPL)

ì Examples include GNU/Linux and BSD UNIX (including
core of Mac OS X)

CMPT 300 Operating System Structures Page 14

Operating System Services

ì User Interface (UI)
ì Program execution: load, run, end
ì I/O operations

ì User programs cannot execute I/O operations directly, so
the operating system must provide means to perform I/O

ì File-system manipulation
ì Communications – exchange of information between

processes executing either on the same computer or
on different systems tied together by a network.
ì Implemented via shared memory or message passing

CMPT 300 Operating System Structures Page 15

Operating System Services

ì Error detection – ensure correct computing by
detecting errors in the CPU and memory hardware, in
I/O devices, or in user programs.
ì Should provide debugging facilities to help track down bugs

Additional functions exist not for helping the user, but
rather for ensuring efficient system operations:

ì Resource allocation – allocating resources to multiple
users or multiple jobs running at the same time

ì Accounting – keep track of and record which users use
how much and what kinds of computer resources

CMPT 300 Operating System Structures Page 16

A View of Operating System Services

CMPT 300 Operating System Structures Page 17

User Operating System Interface –
Command-Interpreter System

ì Many commands are given to the operating system by
control statements typed at the keyboard (for
example)

ì The program that reads and interprets control
statements is called variously:
ì Command-line interpreter (CLI)

ì Shell (in Unix)

ì Its function is to get and execute the next command
statement

CMPT 300 Operating System Structures Page 18

User Operating System Interface –
Graphical User Interface (GUI)

ì User-friendly desktop metaphor interface
ì Usually mouse, keyboard, and monitor

ì Icons represent files, programs, actions, etc

ì Invented at Xerox PARC

ì Many systems now include both CLI and GUI interfaces
ì Microsoft Windows is GUI with CLI “command” shell

ì Apple Mac OS X has “Aqua” GUI interface with UNIX kernel
underneath and shells available

ì Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

CMPT 300 Operating System Structures Page 19

Bourne Shell CLI vs. Mac OS/X GUI

CMPT 300 Operating System Structures Page 20

Touchscreen Interfaces

ì Touchscreen devices require new
interfaces
ì Mouse not possible or not desired

ì Actions and selection based on
gestures

ì Virtual keyboard for text entry

ì Voice commands

CMPT 300 Operating System Structures Page 21

System Calls

ì System calls provide the interface between a running
program and the operating system

ì Mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct
system call use

ì Three most common APIs are
ì Win32 API for Windows

ì POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

ì Java API for the Java virtual machine (JVM)

CMPT 300 Operating System Structures Page 22

System Calls

ì Why use APIs rather than system calls?
ì Allows programs involving system calls to work on multiple

platforms
ì Also, system calls are complex and difficult for programmers

to use directly
ì Types of system calls:

ì Process control
ì File management
ì Device management
ì Information Maintenance
ì Communications
ì Protection

CMPT 300 Operating System Structures Page 23

Example of System Calls

ì System call sequence to copy the contents of one file
to another file:

CMPT 300 Operating System Structures Page 24

Examples of Windows and Unix System Calls

CMPT 300 Operating System Structures Page 25

System Call Implementation

ì Typically, a number associated with each system call
ì System-call interface maintains a table indexed according to

these numbers

ì The system call interface invokes intended system call
in OS kernel and returns status of the system call and
any return values

ì The caller need know nothing about how the system
call is implemented
ì Just needs to obey the API and understand what the OS will

do as a result of the call

CMPT 300 Operating System Structures Page 26

API – System Call – OS Relationship

CMPT 300 Operating System Structures Page 27

Standard C Library Example

ì C program invoking printf() library call, which calls write()
system call

CMPT 300 Operating System Structures Page 28

System Calls –
Parameter Passing

ì Three general methods are used to pass parameters
between a running program and the operating system:
ì Pass parameters in registers

ì Store the parameters in a table in memory

ì The table address is passed as a parameter in a register

ì Use a stack

ì Push (store) the parameters onto the stack, and pop them off
the stack in the function

ì Table and stack methods do not limit the number of
parameters

CMPT 300 Operating System Structures Page 29

Parameter Passing via Table

