CMPT 300 Operating System Structures Page 1

Today's Plan

Upcoming: Today’s topics:
Assignment 1 File/Secondary Storage management
/O System
) Protection/securit
Last time: / Y
_ Computing environments
Operating

: ratin m Services
system duties Operating System Servic

User Operating System Interface

System Calls

CMPT 300 Operating System Structures Page 2

System Components —

Flle Management

A file is a collection of related information defined by
Its creator.

The operating system is responsible for the following
activities in connection with file management:

A File/directory creation and deletion

Support of primitives for manipulating files and directories

e

? Access control available on most systems
72 Mapping files onto secondary storage

e

File backup on stable (non-volatile) storage media

CMPT 300 Operating System Structures Page 3

System Components —

Secondary Stforage Management

Since main memory (primary storage) is volatile and too
small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

Most modern computer systems use drives as the
principle storage medium, for both programs and data.

The operating system is responsible for the following
activities in connection with disk management:

2 Free space management

Storage allocation

Disk scheduling

CMPT 300 Operating System Structures Page 4

Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be
explicit or implicit

Level 1 2 3 4 5
Name registers cache main memory solid-state disk | magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000-50,000 5,000,000
Bandwidth (MB/sec) [20,000-100,000 |5,000-10,000 | 1,000-5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

CMPT 300 Operating System Structures

Migration of Integer A from Disk 1o Register

Multitasking environments must be careful to use
most recent value, no matter where it is stored in the

storage hierarchy

magnetic A main A cacha A hardware
disk memory register

Multiprocessor environment must provide cache

coherency in hardware such that all CPUs have the
most recent value in their cache

Distributed environment situation even more complex

? Several copies of a datum can exist

CMPT 300 Operating System Structures Page 6

System Components —

/O System Management

One purpose of OS is to hide peculiarities of hardware
devices from the user

The I/O system consists of:
A buffer-caching system

A general device driver interface

? Device driver: a set of interrupt handler/subroutines for a
device controller

Drivers for specific hardware devices

CMPT 300 Operating System Structures Page 7

Protection and Security

Protection — any mechanism for controlling access of
processes or users to resources defined by the OS

Security — defense of the system against internal and
external attacks

? E.g. denial-of-service attacks, worms, viruses, identity theft,
theft of service, etc.

CMPT 300 Operating System Structures Page 8

Protection and Security

Systems generally first distinguish among users, to
determine who can do what

7 User identities (user IDs, security IDs) include name and
associated number, one per user

?2 User ID then associated with all files, processes of that user
to determine access control

7 Group identifier (group ID) allows set of users to be defined
and controls managed, then also associated with each
process, file

? Privilege escalation allows user to change to effective ID
with more rights

CMPT 300 Operating System Structures Page 9

Computing Environments —

Traditional & Moblle

Traditional

? Stand-alone general-purpose computers

72 Range from network computers (thin clients) to powerful
laptops/desktops

Mobile
72 Handheld smartphones, tablets, etc.

?A OS must support many features enabled by sensors (GPS,
gyroscope, cameras)

? Allows for new types of apps like augmented reality

CMPT 300 Operating System Structures Page 10

Computing Environments —

Client Server

Client-Server Computing

?” Dumb terminals supplanted by smart PCs

72 Many systems now servers, responding to requests
generated by clients

Compute-server system provides an interface to client to

request services (e.g. database)
client
desktop
client
smartphone

File-server system provides an interface for clients
to store and retrieve files

CMPT 300

Operating System Structures Page 11

Peer-to-Peer Computing

Another model for a distributed system

P2P does not distinguish clients and servers

7
7
7

All nodes are considered peers Con>

May each act as client, server, or both

Node must join P2P network '\
Registers its service with central lookup @‘@
service on network, or

Broadcast request for service and respond
to requests for service via discovery protocol

Examples include Napster, Gnutella, and VOIP services

CMPT 300 Operating System Structures Page 12

Computing Environments —

Cloud Computing

Delivers computing, storage, and apps as a service
across a network

? E.g. Amazon EC2 has thousands of servers, millions of virtual
machines, petabytes of storage available via the internet —
pay based on usage

N

Public and private clouds

N

Software as a service (SaaS) for applications

7 Platform as a service (PaaS) for entire software stack (e.g.
database server)

N

Infrastructure as a service (laaS) for servers or storage

? Load balancers spread traffic across many servers

CMPT 300 Operating System Structures Page 13

Open-Source Operating Systems

Operating systems made available in source-code
format rather than just binary closed-source

Counter to the copy protection and Digital Rights
Management (DRM) movement

Started by Free Software Foundation (FSF), which has
“copyleft” GNU Public License (GPL)

Examples include GNU/Linux and BSD UNIX (including
core of Mac OS X)

CMPT 300 Operating System Structures Page 14

Operating System Services

User Interface (Ul)
Program execution: load, run, end

/O operations

2 User programs cannot execute /O operations directly, so
the operating system must provide means to perform |/O

File-system manipulation

Communications — exchange of information between
processes executing either on the same computer or
on different systems tied together by a network.

72 Implemented via shared memory or message passing

CMPT 300 Operating System Structures Page 15

Operating System Services

Error detection — ensure correct computing by
detecting errors in the CPU and memory hardware, in
/O devices, or in user programs.

72 Should provide debugging facilities to help track down bugs

Additional functions exist not for helping the user, but
rather for ensuring efficient system operations:

Resource allocation — allocating resources to multiple
users or multiple jobs running at the same time

Accounting — keep track of and record which users use
how much and what kinds of computer resources

CMPT 300

Operating System Structures

Page 16

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program /o file communication s o accounting
execution operations systems allocation
error pro;icc:jtlon
detection ' security
services

operating system

hardware

CMPT 300 Operating System Structures Page 17

User Operating System Inferface —

Command-Interpreter System

Many commands are given to the operating system by
control statements typed at the keyboard (for
example)

The program that reads and interprets control
statements is called variously:

? Command-line interpreter (CLI)

? Shell (in Unix)

Its function is to get and execute the next command
statement

CMPT 300 Operating System Structures Page 18

User Operating System Inferface —

Graphical User Interface (GUI)

User-friendly desktop metaphor interface
Usually mouse, keyboard, and monitor
? lcons represent files, programs, actions, etc

2 Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces
72 Microsoft Windows is GUI with CLI “command” shell

?2 Apple Mac OS X has “Aqua” GUI interface with UNIX kernel
underneath and shells available

? Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

CMPT 300 Operating System Structures

Page 19

Shell CLI vs. Mac OS/X GUI

9] B Terminal
File Edit View Terminal Tabs Help

fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O

sd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 O

sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
extended device statistics

device r/s w/s kr/s kw/s wait actv svc_t %w %b

fdo 0.0 0.0 0.0 0.0 0.0 0.0 0:00 0 ©

sd0 0.6 0.0 38.4 0.0 0.0 0.0 8.2 0 O

sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O

(root@bg-nv64-vm)-(11/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# swap -sh

total: 1.1GC allocated + 190M reserved = 1.3GC used, 1.6C available
(root@pbg-nv64-vm)-(12/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systemn-contents/scripts)# uptime

12:53am up 9 min(s), 3 users, Tload average: 33.29, 67.68, 36.81
(root@pbg-nv64-vm)-(13/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# w

4:07pn up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66

User tty login@ 1didle JCPU PCPU what

root console 15Jun0718days 1 /usr/bin/ssh-agent -- /fusr/bi
n/d

root pts/3 15Jun07 18 4 w

root pts/4 15Jun0718days W

(root@pbg-nv64-vm) - (14/pts)-(16:07 02-IJul-2007)-(global)
-(/var/tmp/systen-contents/scripts)#

S L operating system

Tose_stseshon_wnam 8050e6b)+es830597 ¢ acns
‘re a0

e

DSSD HIGH PERFORMANCE
PARALLEL FILE SYSTEMS

CLICK TO EDIT MASTER SUBTITLE STYLE

CMPT 300 Operating System Structures Page 20

Touchscreen Interfaces

Touchscreen devices require new
interfaces

? Mouse not possible or not desired

2 Actions and selection based on
gestures

? Virtual keyboard for text entry

Voice commands

CMPT 300 Operating System Structures Page 21

System Calls

System calls provide the interface between a running
program and the operating system

Mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct
system call use

Three most common APls are
2 Win32 API for Windows

? POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

? Java API for the Java virtual machine (JVM)

CMPT 300 Operating System Structures Page 22

System Calls

Why use APIs rather than system calls?

? Allows programs involving system calls to work on multiple
platforms

? Also, system calls are complex and difficult for programmers
to use directly

Types of system calls:

Process control

File management

Device management
Information Maintenance
Communications

A X N NN

Protection

CMPT 300 Operating System Structures Page 23

Example of System Calls

System call sequence to copy the contents of one file
to another file:

source file »| destination file

4 Example System Call Sequence A

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally y

A

CMPT 300

Operating System Structures

Page 24

Examples of Windows and Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait ()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe)
shmget ()
mmap ()

chmod ()
umask ()
chown()

CMPT 300 Operating System Structures Page 25

System Call Implementation

Typically, a number associated with each system call

? System-call interface maintains a table indexed according to
these numbers

The system call interface invokes intended system call

in OS kernel and returns status of the system call and
any return values

The caller need know nothing about how the system
call is implemented

Just needs to obey the APl and understand what the OS will
do as a result of the call

CMPT 300 Operating System Structures Page 26

APl - System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
> open ()
S Implementation
i » of open ()
system call

return

CMPT 300 Operating System Structures Page 27

Standard C Library Example

C program invoking printf() library call, which calls write()
system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return O;

}

user
node

standard C library —

ernel

node
Q/rite () >

write ()
system call

CMPT 300 Operating System Structures Page 28

System Calls —

Parameter Passing

Three general methods are used to pass parameters
between a running program and the operating system:

? Pass parameters in registers
? Store the parameters in a table in memory

The table address is passed as a parameter in a register

2 Use astack

Push (store) the parameters onto the stack, and pop them off
the stack in the function

Table and stack methods do not limit the number of
parameters

CMPT 300 Operating System Structures Page 29

Parameter Passing via Table

—> X

register

X: parameters
for call

—®| use parameters code for
load address X / from table X system
system call 13 = > call 13

user program

operating system

