Today's Plan

Upcoming:

Assignment 1

Last time:

Operating system duties

Today's topics:

Operating System Structures

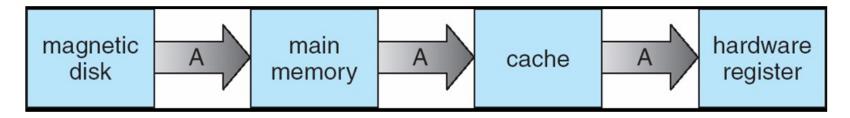
- **₹** File/Secondary Storage management
- I/O System
- Protection/security
- Computing environments
- Operating System Services
- User Operating System Interface
- System Calls

System Components – File Management

- A file is a collection of related information defined by its creator.
- The operating system is responsible for the following activities in connection with file management:
 - File/directory creation and deletion
 - Support of primitives for manipulating files and directories
 - Access control available on most systems
 - Mapping files onto secondary storage
 - File backup on stable (non-volatile) storage media

System Components – Secondary Storage Management

- Since main memory (*primary storage*) is volatile and too small to accommodate all data and programs permanently, the computer system must provide *secondary storage* to back up main memory.
- Most modern computer systems use drives as the principle storage medium, for both programs and data.
- The operating system is responsible for the following activities in connection with disk management:
 - Free space management
 - Storage allocation
 - Disk scheduling


Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit

Level	1	2	3	4	5
Name	registers	cache	main memory	solid-state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25-0.5	0.5-25	80-250	25,000-50,000	5,000,000
Bandwidth (MB/sec)	20,000-100,000	5,000-10,000	1,000-5,000	500	20-150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Migration of Integer A from Disk to Register

Multitasking environments must be careful to use most recent value, no matter where it is stored in the storage hierarchy

- Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache
- Distributed environment situation even more complex
 - Several copies of a datum can exist

System Components – I/O System Management

One purpose of OS is to hide peculiarities of hardware devices from the user

The I/O system consists of:

- A buffer-caching system
- A general device driver interface
 - Device driver: a set of interrupt handler/subroutines for a device controller
- Drivers for specific hardware devices

Protection and Security

- **Protection** − any mechanism for controlling access of processes or users to resources defined by the OS
- Security defense of the system against internal and external attacks
 - E.g. denial-of-service attacks, worms, viruses, identity theft, theft of service, etc.

Protection and Security

- Systems generally first distinguish among users, to determine who can do what
 - User identities (user IDs, security IDs) include name and associated number, one per user
 - User ID then associated with all files, processes of that user to determine access control
 - Group identifier (group ID) allows set of users to be defined and controls managed, then also associated with each process, file
 - Privilege escalation allows user to change to effective ID with more rights

Computing Environments – Traditional & Mobile

Traditional

- **♂** Stand-alone general-purpose computers
- Range from network computers (thin clients) to powerful laptops/desktops

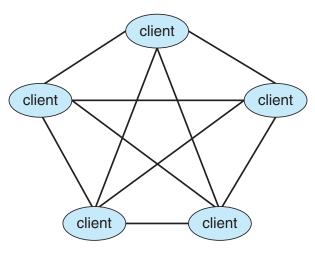
Mobile

- Handheld smartphones, tablets, etc.
- OS must support many features enabled by sensors (GPS, gyroscope, cameras)
- Allows for new types of apps like augmented reality

Computing Environments – Client Server

- Client-Server Computing
 - Dumb terminals supplanted by smart PCs
 - Many systems now servers, responding to requests generated by clients
 - **Compute-server system** provides an interface to client to request services (e.g. database)
 - File-server system provides an interface for clients to store and retrieve files

 Server


 Network

 Client laptop

 Client smartphone

Peer-to-Peer Computing

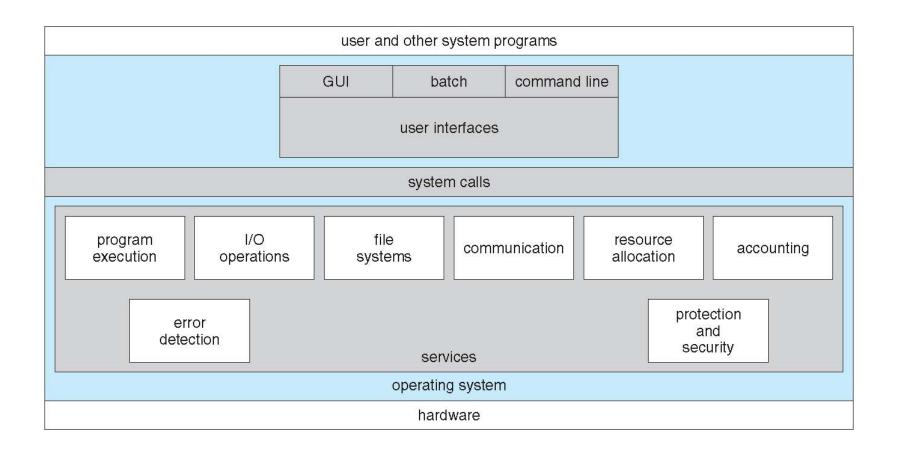
- Another model for a distributed system
- P2P does not distinguish clients and servers
 - All nodes are considered peers
 - May each act as client, server, or both
 - Node must join P2P network
 - Registers its service with central lookup service on network, or
 - Broadcast request for service and respond to requests for service via discovery protocol
 - Examples include Napster, Gnutella, and VOIP services

Computing Environments – Cloud Computing

- Delivers computing, storage, and apps as a service across a network
 - E.g. Amazon EC2 has thousands of servers, millions of virtual machines, petabytes of storage available via the internet pay based on usage
 - **7** Public and private clouds
 - **♂ Software as a service** (SaaS) for applications
 - ▶ Platform as a service (PaaS) for entire software stack (e.g. database server)
 - Infrastructure as a service (laaS) for servers or storage
 - Load balancers spread traffic across many servers

Open-Source Operating Systems

- Operating systems made available in source-code format rather than just binary closed-source
- Counter to the copy protection and Digital Rights Management (DRM) movement
- Started by Free Software Foundation (FSF), which has "copyleft" **GNU Public License** (GPL)
- Examples include GNU/Linux and BSD UNIX (including core of Mac OS X)

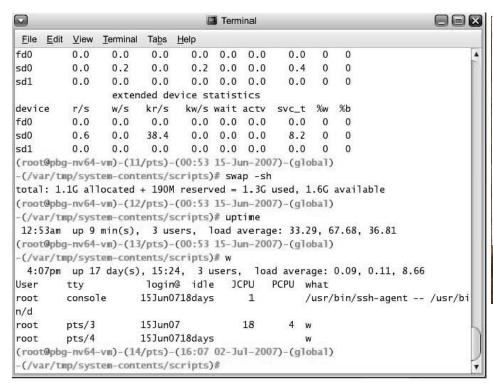

Operating System Services

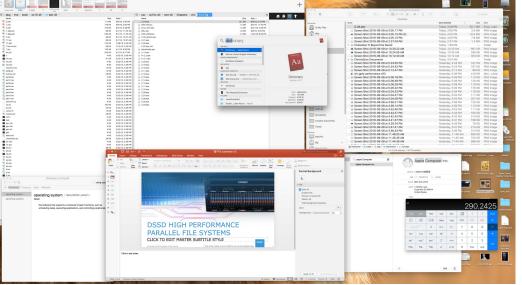
- User Interface (UI)
- Program execution: load, run, end
- I/O operations
 - User programs cannot execute I/O operations directly, so the operating system must provide means to perform I/O
- File-system manipulation
- Communications exchange of information between processes executing either on the same computer or on different systems tied together by a network.
 - Implemented via shared memory or message passing

Operating System Services

- Error detection ensure correct computing by detecting errors in the CPU and memory hardware, in I/O devices, or in user programs.
 - Should provide debugging facilities to help track down bugs
 - Additional functions exist not for helping the user, but rather for ensuring efficient system operations:
- Resource allocation allocating resources to multiple users or multiple jobs running at the same time
- Accounting keep track of and record which users use how much and what kinds of computer resources

A View of Operating System Services


User Operating System Interface – Command-Interpreter System


- Many commands are given to the operating system by control statements typed at the keyboard (for example)
- The program that reads and interprets control statements is called variously:
 - Command-line interpreter (CLI)
 - Shell (in Unix)
- Its function is to get and execute the next command statement

User Operating System Interface – Graphical User Interface (GUI)

- User-friendly desktop metaphor interface
 - Usually mouse, keyboard, and monitor
 - Icons represent files, programs, actions, etc.
 - Invented at Xerox PARC
- Many systems now include both CLI and GUI interfaces
 - Microsoft Windows is GUI with CLI "command" shell
 - Apple Mac OS X has "Aqua" GUI interface with UNIX kernel underneath and shells available
 - Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GNOME)

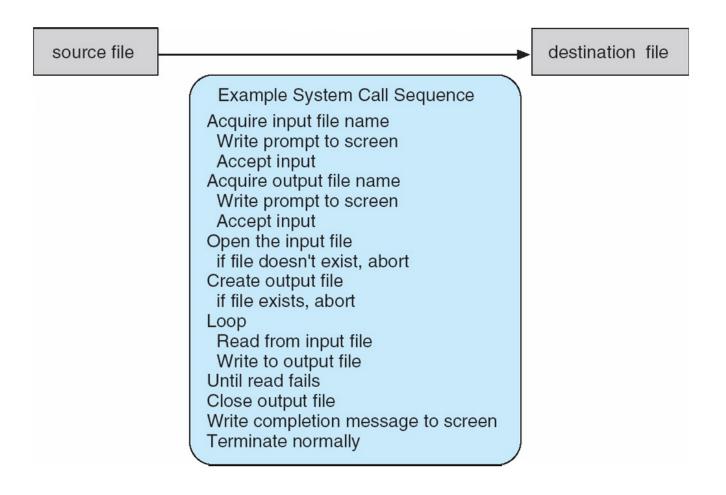
Bourne Shell CLI vs. Mac OS/X GUI

Touchscreen Interfaces

- Touchscreen devices require new interfaces
 - Mouse not possible or not desired
 - Actions and selection based on gestures
 - Virtual keyboard for text entry
- Voice commands

System Calls

- System calls provide the interface between a running program and the operating system
- Mostly accessed by programs via a high-level


 Application Program Interface (API) rather than direct system call use
- Three most common APIs are
 - Win32 API for Windows
 - POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X)
 - Java API for the Java virtual machine (JVM)

System Calls

- Why use APIs rather than system calls?
 - Allows programs involving system calls to work on multiple platforms
 - Also, system calls are complex and difficult for programmers to use directly
- Types of system calls:
 - Process control
 - File management
 - Device management
 - Information Maintenance
 - Communications
 - Protection

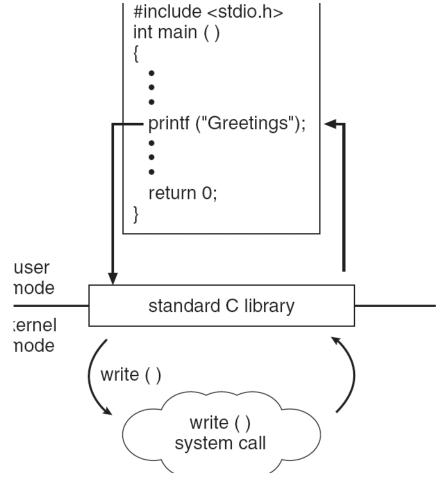
Example of System Calls

System call sequence to copy the contents of one file to another file:

Examples of Windows and Unix System Calls

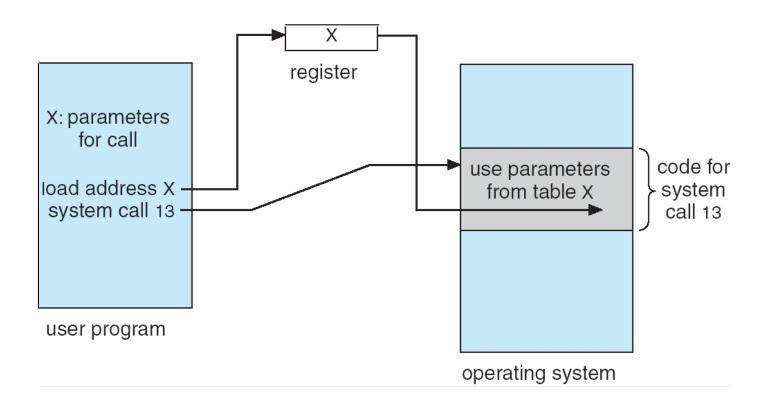
	Windows	Unix
Process	CreateProcess()	fork()
Control	ExitProcess()	exit()
	WaitForSingleObject()	wait()
File	CreateFile()	open()
Manipulation	ReadFile()	read()
	WriteFile()	write()
	CloseHandle()	close()
	020201111120()	0_000()
Device	SetConsoleMode()	ioctl()
Manipulation	ReadConsole()	read()
	WriteConsole()	write()
	, illustration ()	,,,,,,
Information	GetCurrentProcessID()	getpid()
Maintenance	SetTimer()	alarm()
	Sleep()	sleep()
	F()	F()
Communication	CreatePipe()	pipe()
	CreateFileMapping()	shmget()
	MapViewOfFile()	mmap()
Protection	SetFileSecurity()	chmod()
	<pre>InitlializeSecurityDescriptor()</pre>	umask()
	SetSecurityDescriptorGroup()	chown()

System Call Implementation


- Typically, a number associated with each system call
 - System-call interface maintains a table indexed according to these numbers
- The system call interface invokes intended system call in OS kernel and returns status of the system call and any return values
- The caller need know nothing about how the system call is implemented
 - Just needs to obey the API and understand what the OS will do as a result of the call

API – System Call – OS Relationship

Standard C Library Example


C program invoking printf() library call, which calls write() system call

System Calls – Parameter Passing

- Three general methods are used to pass parameters between a running program and the operating system:
 - Pass parameters in registers
 - Store the parameters in a table in memory
 - ▼ The table address is passed as a parameter in a register
 - Use a stack
 - Push (store) the parameters onto the stack, and pop them off the stack in the function
- Table and stack methods do not limit the number of parameters

Parameter Passing via Table

