
CMPT 980 – Information Privacy

Module 3: Privacy-Preserving
Cryptography

1

Repudiability

• PKE + PKI allows authentication
• But having our identities provably attached to our message isn’t

always desirable
• Connecting identity with behavior compromises privacy

• Repudiability/Deniability: Messages sent in this channel cannot
be proven by any other party to have originated from the sender

• Can we design a cryptographic protocol to allow authentication,
but also allow repudiability?
• That is to say, Bob believes Alice is Alice, but Bob cannot

prove to anyone else that Alice is Alice

2

Repudiability

• Consider a SKE setup:

• Bob can check the MAC to ensure that whomever sent this must
have the secret key

• Bob knows he himself did not write M, so Alice did
• But Bob cannot prove Alice wrote M to anyone else, since Bob

could’ve written M

BobAlice
EncK(M), Hash(EncK(M), K)K K

3

Forgeability

• A forgeable ciphertext is a ciphertext that anyone, not just Alice
or Bob, could have written
• Even the intercepting attacker could have created this

message
• This can be achieved with malleable encryption

• Recall: Ciphertexts encrypted with malleable encryption can
be edited to produce predictable changes in the plaintext

• This can also be achieved by revealing the key

4

Forward secrecy

• We want to limit damage if keys are exposed
• A (long-term) key in a cryptosystem has forward secrecy if

leaking that key does not expose past conversations
• To achieve this, we ensure that:

• Long-term keys are only used for signing
• Encryption is done only with short-term (session) keys

Keys exposed!

These conversations are safe These are not safe
(Eve could’ve started them)

5

Break-in Recovery

• A cryptosystem has break-in recovery if future conversations
after the point of compromise are safe
• Also known as future secrecy
• If we only use short-term keys, we have break-in recovery;

but we need long-term keys to bootstrap trust

Keys exposed!

These conversations
are safe

6

Double Ratchet Algorithm

• Used in the Signal Protocol
• WhatsApp, possibly Facebook Messenger and Skype

• Based on the Off-the-Record Messaging algorithm
• Achieves repudiation, forward secrecy, and break-in recovery
• Based on two sets of ratchets:

• The Diffie-Hellman ratchet generates ratchet keys
• The symmetric key ratchet generates message keys based on

ratchet keys
• A ratchet key can be used to generate several message keys

from the same sender

7

Double Ratchet Algorithm
Diffie-Hellman Ratchet

• Consider DH:
• Generator g
• Alice’s private key is x, public key is gx

• Bob’s private key is y, public key is gy

• Shared secret becomes gxy

• In the Diffie-Hellman Ratchet, a sequence of shared secrets is
generated

• A new shared secret is generated whenever someone who has
just received a message wants to send a message

• Ratchet keys will be generated from those shared secrets
8

Diffie-Hellman Ratchet

gA1B1

gA1 gB1A1 B1

Private Public PrivatePublicRatchet key

gA1B1

Ratchet key

gA2A2

gA2B1 gA2B1

gB2 B2

gA2B2 gA2B2

gA3A3

gA3B2 gA3B2

Alice Bob

9

Double Ratchet Algorithm
Diffie-Hellman Ratchet

• What happens if a private key is compromised later?
• Then exactly 2 ratchet keys are compromised
• If it is B5, then they would be gA5B5, gA6B5 (if Alice talks first)
• No other past or future ratchet keys, or messages depending

on those keys, are compromised: forward secrecy and future
secrecy

• The ability to encrypt and create HMACs using the ratchet key
would also provide repudiability, as long as we avoid signatures
• In reality, we refrain from using the ratchet key directly to

further reduce the attacker’s attack surface
10

Double Ratchet Algorithm
Symmetric Key Ratchet

Based on Key Derivation Function Chains:

KDF

Root key

KDF

Usable key

Usable key

KDF Usable key

Input

Input

Input

The point is to create
usable temporary keys
that can be leaked without
compromising other keys.

11

Double Ratchet Algorithm
Symmetric Key Ratchet

First, the ratchet keys produces sending/receiving keys:

KDF

Root key

KDF

Sending key

Receiving key

KDF Sending key

Ratchet key 1 (Alice’s side) First ratchet
key is Alice’s first sending
key; Bob’s would start
with a receiving keyRatchet key 2

Ratchet key 3
12

Double Ratchet Algorithm
Symmetric Key Ratchet

Each sending/receiving key starts its own symmetric key KDF chain:

KDF

Sending key

KDF

Message key

Message key

KDF Message key

Constant Each message key is used
for only one message.

Constant

Constant
13

Double Ratchet Algorithm

• KDF chains generates a series of keys, each key based on the
previous root key and an input

• The DH ratchet generates and procedurally updates ratchet keys
• A new chain is started whenever one side switches from

receiving to sending
• The ratchet keys are used as input to the DH KDF chain to

generate sending and receiving chain keys
• Chain keys are used as the bootstrapping root key for symmetric

key DF chains to generate message keys

Review

14

Double Ratchet Algorithm

• Benefits of using two ratchets:
• Each message key can be deleted after one use;

sending/receiving keys can be deleted after all relevant
messages are sent/received

• Handling of out-of-order/dropped messages is possible
• Limits compromise of messages from key leakage

• Sending/receiving keys can compromise multiple
messages

• Ratchet key plus a previous root key for the same
• Each message key can leak one message

15

Double Ratchet Algorithm

• Can we also achieve forgeability?
• Possibly, by releasing MAC keys (not decryption keys)

• A message participant can still collude with an outsider to prove
messages sent by the other participant are real
• It is possible to resolve this problem (“strong deniability”)

• This does not work for group messaging
• The property that an HMAC indirectly proves identity does

not follow for group messaging

16

Zero-Knowledge Proofs

I want to login as Alice.

Okay, what’s your password?

But I don’t want to tell you my
password!

??

17

What is zero knowledge?

• Can Bob verify Alice without gaining knowledge of her
password?
• This is possible if Bob trusts Alice’s public key – they can use a

signature protocol, but this is not zero-knowledge
• Generally, we want Alice to be able to prove her knowledge of

her password while giving no knowledge to any observer
• This means that:

• Any observer of the interactive proof gains no knowledge
(how do we formalize this?)

• The proof itself must also be unconvincing to an observer
• The proof is only convincing to Bob

18

Example: ZKP Cave

Prove to me you can
open the door in the

cave!

Locked
door

Alice wants to prove she knows the passcode for the door. She enters the cave
(either from A or B) and waits there.

A

B

19

Example: ZKP Cave

Tails = B!

Locked
door

Bob cannot see where Alice went. He secretly flips a coin and tells Alice to come
out of the cave that way.

B

A

20

Example: ZKP Cave

Tails = B!

Locked
door

Repeat the experiment enough times that Alice’s ability to come out of the cave
every time is not due to random chance.

B

A

21

ZKP Transcripts must be Unconvincing

• The experiment cannot convince anyone but Bob that Alice can
open the door
• An observer notes that Bob and Alice can be colluding
• If Bob’s coin flips are publicly recorded, then the proof is not

zero-knowledge (it is convincing to an observer)
• In practice, Bob could also pre-share his PRNG seed with

Alice, so even non-recorded coin flips are not convincing
• If Alice’s entry into the cave is recorded, it is also not zero-

knowledge

22

Defining ZKP

• An interactive proof system is zero-knowledge if for any
statement it is able to prove, there exists a simulator that can
create a transcript of the interactive proof
• The transcript must match what the verifier sees
• The simulator is given any coin flips that the verifier may

perform, and any pre-knowledge the verifier can use
• Otherwise the simulator knows nothing

• It is easy for a simulator to create a transcript of the ZKP cave:
The verifier yells a letter and Alice comes out of the cave that
way

23

ZKP of discrete log

• Given y and a prime group modulo p, Alice proves that she
knows A such that gA = y mod p
• This means proving possession of the private key under

ElGamal for a given public key

Protocol
1. Alice generates a random number r and sends gr mod p to Bob.
2. Bob flips a coin.

• Heads: Ask Alice to send r.
• Tails: Ask Alice to send (A+r) mod p-1.

3. Bob verifies Alice sent the right message.
24

ZKP of discrete log – convinces Bob

• Bob’s verification
• Heads: Bob can compute gr mod p.

• This doesn’t prove Alice knows A, though; only that she
did not otherwise cheat in the protocol.

• Tails: Bob can compute g(A+r) mod p-1 mod p = gA * gr mod p
• Unless Alice knows A, this is highly unlikely

• Overall, for one run of the protocol, there is a marginally less
than ½ chance that Alice can cheat Bob

• Repeat enough times for Bob to be convinced

25

ZKP of discrete log – does not convince
anyone else

• How is the proof ZK? (Is it unconvincing to any observer?)
• Equivalently, how can Alice and Bob “cheat” if Bob pre-shared

his coin flips with Alice?
• If Alice knew ahead of time that Bob would flip tails…

• Instead of generating a random number r and sending gr mod
p, she sends gr’ * (gx)-1 to Bob for some random number r’

• In the second step, she simply sends r’ for tails
• The above is how a simulator would create a correct transcript

for any A (as the simulator is also given Bob’s coin flips)

26

ZKP of 3-Coloring

• Given a graph, Alice proves that she knows how to assign
vertices to up to 3 colors such that no edge connects two
vertices of the same color
• This is NP-complete => All NP-complete proofs can be ZKP

Protocol
1. Alice randomly chooses 1 of 6 possible colorings
2. Alice encrypts all edges and sends encryptions

to Bob, but not the keys
3. Bob requires Alice to send keys for a random

edge (two vertices), verifies them
27

This is the step that allows
“cheating” to achieve zero-
knowledge

Commitment schemes

• We can use commitment schemes to force Alice to commit
• Alice commits to a value x, COM(x), such that:

• Binding: Alice cannot find another y such that
COM(y) = COM(x)

• Hiding: An observer cannot find x
• Later, Alice can “open” the commitment to reveal x
• Pedersen commitment: COM(x) = gxhr for public g, h, random r;

open this commitment by revealing r
• Correct version of previous slide: Replace encryption with

commitments (why?)

28

Reducing round-trips

• Both of the previous proofs require many rounds to complete,
but this can be reduced to 1. Recall discrete log ZKP:

29

2. Bob flips a coin.
• Heads (0): Ask Alice to send (0*A+r) mod p-1.
• Tails (1): Ask Alice to send (1*A+r) mod p-1.

2. Bob generates a random challenge c.
• Ask Alice to send (c*A+r) mod p-1

Reducing round-trips

• Verification: Check that

• Simulator’s “cheat”: Knowing c ahead of time, Alice sends
gr’*(g-Ac) in step one and gr’ in step three

• p is a security parameter for the soundness of this proof

30

(𝑔𝐴)𝑐𝑔𝑟 ≡ 𝑔 𝑐𝐴+𝑟 𝑚𝑜𝑑 𝑝−1 (𝑚𝑜𝑑 𝑝)

Non-Interactive ZKP

• We can further reduce one round to zero rounds using the Fiat-
Shamir heuristic if Bob’s only messages are random coin flips

• Key requirement: existence of a cryptographic hash that
produces truly random output

31

M3

M1

M2
Alice Bob Alice Bob

M1, M2=h(M1), M3

Non-Interactive ZKP

• The hash function is used as a random oracle: It has a consistent
but unpredictable mapping between inputs and outputs

• Open question: Is a hash truly a random oracle?
• Open question: What is truly zero-knowledge in the random

oracle model?
• The simulator needs to be able to “choose” the output of a

random oracle – so have we lost deniability in ZKPs?

32

Applications of ZKP

• Authentication
• Proof of ownership of private key for signatures
• Password systems, access control

• Voting, auctions
• Electronic cash – ‘I have enough money for this transaction’

• Adding privacy to Bitcoin (Zerocoin)
• Implementing private group chat
• Theoretical interest: language of statements that can be proven

in ZKP

33

Blind Signatures

• Sometimes we want the signing party to gain no information on
what they are signing

• e.g. electronic voting, e-cash
• Chaum’s blind signatures:

• Recall that in RSA, to sign a message m with private key d:
Sign(m, d) ≡ md (mod N) for some N = pq

• Instead of signing m, use the signer’s public key to blind the
message with a random r:

m’ ≡ mre (mod N)
• Then r-1 Sign(m’, d) = Sign(m, d), i.e. Alice can obtain a valid

signature for m without ever revealing it
34

Chaum’s e-cash

• Application of blind signatures:
• Each signature is 1 coin (e.g. worth $1)
• When a payer asks the bank to blindly sign a number “c”, the

bank takes $1 from their account; “c” is now an e-coin
• When a payer pays the payee, the payee checks the signature
• The payee presents the signature to the coin, who will credit

$1 to the payee’s account
• Signatures are recorded to prevent double spending
• Blind signatures are used so that the bank cannot use c

themselves

35

Blind Signatures

• In the previous scheme, a seller needs to contact the bank
before accepting a transaction

• For an off-line scheme, we need a way to detect cheating:
• Alice has a public identity number u
• Replace c in the previous slide with a coin of a specific format:

c = (c1, c2, …, cn), ci = (h(ai, bi), h(ai⊕u, di))
• When spending a coin, the seller randomly asks Alice to

reveal either (ai, bi) or (ai⊕u, di) for each i
• If Alice double spends a coin, there is a high chance she will

reveal both (ai, bi) and (ai⊕u, di) for the same i

36

Secret Sharing

• We may want to “divide” a secret so that it can only be
recovered only if k out of n people agree to recover it
• e.g. nuclear codes, top-level secrets, data loss

• If fewer than k people agree to recover it, no information about
the secret is discoverable

• Simple scheme for k = n:
• n - 1 people get a random bit string
• The last person gets the XOR of the secret with the n-1

random bit strings
• Fewer than k people would essentially obtain a random string

37

Shamir’s Secret Sharing

• Intuition: k points define a polynomial of degree k-1
• Any number of degree k-1 polynomials can pass through k-1

points
• Randomly generate a polynomial of degree k-1
• Find n points on the polynomial

• e.g. (1, f(1)), (2, f(2)), …, (n, f(n))
• The points are the secret shares
• The constant is the secret

38

Verifiable Secret Sharing

• If secret generation is offloaded to a dealer, how can we know
that the dealer has given us correct shares?
• Risk: Dealer can distribute shares that are inconsistent, that is,

some set of shares will reveal a different secret than some
other set

• In this case the polynomial has degree more than k-1
• (Benaloh’s) Intuition: If two polynomials add up to degree at

most k-1, then either they are both polynomials of degree at
most k-1 or both polynomials of degree more than k-1

39

Verifiable Secret Sharing
Verify:
• Besides P, dealer also shares many “verification polynomials” P1,

P2, … with degree at most k-1
• Verifier chooses a random subset S of verification polynomials,

and asks the dealer to reveal all shares of S
• Everyone can recover the polynomials of S and see that they are

degree at most k-1
• Dealer also reveals all shares of

• Verifier also checks this has degree at most k-1
• It is very unlikely that P has degree more than k-1 in this case

40

෍

𝑃𝑗∉𝑆

𝑃𝑗 + 𝑃

