
CMPT 980 – Information Privacy

Module 2: Cryptography
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Signal transmission is inherently unsafe

You can be eavesdropped on when talking 
through:

• Air (for broadcast messages such as 
wireless)

• Copper wires, with a vampire tap

• Optical fiber

• Other programs on the same device

Vampire tap
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Goals

• Confidentiality – To safeguard packets from eavesdropping
• Integrity – To prevent packet modification in transmission
• Authenticity – To prove the identity of the sender

All of these can be achieved with cryptography:
• Confidentiality – Encryption/decryption
• Integrity – MAC, Signing (to some extent)
• Authenticity – Signing (to some extent), Public Key Infrastructure
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The XOR function⊕
Value table of XOR:

⊕ 0 1

0 0 1

1 1 0

XOR is the same as “Addition modulo 2”.
Bit-by-bit XOR of two bit strings:

(0110) ⊕ (1011) = (1101)
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M

BA

Encryption and Decryption

Scenario: A wants to send plaintext M to B, but doesn't want the attacker to see M
when it passes through the unsafe medium (red).

A and B both already know some key K.

K K
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BA

Encryption and Decryption

1. Using the encryption mechanism Enc() and key K,
A encrypts M into a ciphertext, EncK(M).

K K

Enc
K
(M)
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BA

Encryption and Decryption

2. A sends the ciphertext across the channel (unsafe medium)

K K

Enc
K
(M)
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BA

Encryption and Decryption

3. Upon receiving the ciphertext, B decrypts it using the same key

K K

Dec
K
(Enc

K
(M))
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BA

Encryption and Decryption

4. Dec(Enc(M)) = M; B receives the plaintext message M.

K K

Dec
K
(Enc

K
(M))
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Simple System: The Caesar Cipher

ATTACK “LONG A”Plaintext:

Encryption: Add K letters (K=1 here)

BUUBDL “MPOH B”Ciphertext:

Unsafe medium

Ciphertext:

Decryption: Subtract K letters (K=1 here)

Plaintext:

BUUBDL “MPOH B”

ATTACK “LONG A”
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Problems of this cryptosystem:
• Ciphertext Repetition: What if you see BUUBDL “MPOH B” and 

then EFGFOE “MPOH B”?
• Key Update Problem: How can we update the key? Using the 

same key for a long time increases risk.
• Short Key Length: How many possibilities are there for the 

encryption/decryption mechanism?
• Frequency Analysis: If the letter “F” appears most frequently in 

ciphertexts, what does it mean?

Simple System: The Caesar Cipher
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Use a Initialization Vector (IV):
• The IV becomes a third input to encryption

• Each message must have a different IV
o Even with the same key and plaintext, a different IV will 

produce a different ciphertext
• The IV is sent publicly alongside the message – it does not matter 

if the attacker sees it

Solving Ciphertext Repetition

EncK, IV(M)
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Solving Ciphertext Repetition

ATTACK “LONG A”Plaintext:

Encryption: Add K+IV letters (K=1, IV=3)

EXXEGO “PSRK E”, +3Ciphertext:

Unsafe medium

Ciphertext:

Decryption: Subtract K+IV letters (K=1, IV=3)

Plaintext:

EXXEGO “PSRK E”, +3

ATTACK “LONG A”

IV
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Solving the Key Update Problem

• Find a safe channel to deliver the key instead
• Hand-delivered documents, cards
• Not practical for computer systems

• Public Key Encryption
• In PKE, the encryption and decryption keys are different
• This can be used to create a safe channel on an unsafe one

• Only send the encryption key across the channel
• More later
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Solving the Key Length Problem

A
B
C
D
E
F
G
H

A
B
C
D
E
F
G
H

... ...

Plaintext Ciphertext

• We can use a general substitution 
cipher to increase the key length
• 26! ≈ 288

• The key is the permutation (by 
some ordering), so key length 
is “88 bits”

• This is still vulnerable to 
frequency analysis!
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Symmetric Key Encryption

• A type of cryptosystem where the two parties (Alice and 
Bob) both know a secret key, K

• The encryption and decryption algorithms, EncK() and 
DecK(), are publicly known functions

• K must be secret from anyone else
• EncK(M) should not reveal either K or M
• Both parties can encrypt and decrypt
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Defining Security of a Cryptosystem

• Intuition: Given a ciphertext EncK(M), if the attacker can 
know even one bit of the plaintext M, the cryptosystem 
is not good enough.

• How do we formalize the notion of “knowing nothing 
about M”?

• We can say: if we ask the attacker 

and the attacker answers M, then the attacker knows 
something about the plaintext

Do you think the plaintext is M or M’?
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Ciphertext indistinguishability
IND-CPA (Indistinguishability under Chosen Plaintext Attack):
• The adversary proves he can break the cryptosystem to the challenger
• The adversary has an encryption oracle running EncK(), but not K

• The adversary can call it at any time on any message
• Game:

1. The adversary chooses and submits a plaintext message M, to the 
challenger.

2. The challenger randomly encrypts either M or a random plaintext 
and sends it back.

3. If the adversary can guess correctly with more than trivial 
probability (1/2), the adversary wins. 

• If there exists no adversary that can win the game in polynomial time, 
the cryptosystem is IND-CPA. 18



What does IND-CPA give us?

An easier way to prove something isn’t secure:
• Anything without IV (randomization) is insecure. (Why?)
• Given plaintexts M and M’, we don’t want the attacker to be able to 

tell that p(EncK(M)=X) != p(EncK(M’)=X)
• If they are exactly equal, we have perfect secrecy

A way to prove something is secure:
• This usually involves assuming that a problem is computationally 

difficult, and reducing the cryptosystem to that problem

Also called semantic security
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One-Time Pad

Key: Uniformly random bit sequence
10110100 01010101 10001111

Encrypt:

Plaintext: Write in bit form (e.g. “ABC”)
01000001 01000010 01000011

Bit-by-bit XOR key with plaintext

11110101 00010111 11001100Ciphertext:

Decrypt: Bit-by-bit XOR key with ciphertext

01000001 01000010 01000011
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One-Time Pad

VENONA project code-breakers

Achieves perfect secrecy if:
• Key is truly uniformly random
• Key is only used once, ever

It is completely insecure if a pad 
(key) is used twice
• This makes it somewhat 

impractical
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One-Time Pad

Breaking a Two-Time Pad:
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Suppose the attacker intercepts two ciphertexts:
C = M ⊕ K and C’ = M’ ⊕ K

The attacker applies XOR to the ciphertexts to obtain:
C ⊕ C’ = M ⊕ K ⊕M’ ⊕ K

The result is the XOR of the plaintexts. 
• If the attacker correctly guesses M, he can obtain M’ by M ⊕ C ⊕ C’.
• If the attacker correctly guesses only one word of M (and its position), 

he can still obtain some letters in M’ (at the same position).

= M ⊕M’



Stream Cipher

Approximates a One-Time Pad:
• Keystream is pseudorandom, generated from a seed
• IV does not repeat between messages

The seed is the real key.
• The keystream generation function describes the stream cipher

Enc
seed, IV

(M) = K(seed ⊕ IV) ⊕ M
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Stream Cipher
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• One construction is with Linear Feedback Shift Registers (LFSRs) 
(e.g. A5/1, A5/2)

• A single LFSR cannot serve as a stream cipher (easily broken)
• Some stream ciphers not based on LFSRs (e.g. RC4) may still use 

similar concepts (maintaining and updating a register)
• Nowadays, if stream ciphers are needed, we usually use block 

ciphers in a suitable mode of operation instead



Malleability
• A cipher is malleable if changes in the ciphertext will cause predictable 

changes in the plaintext
• Integrity: The attacker shouldn’t be able to change what we’re doing

• Given Enc(M), the attacker can create Enc(M’) for some related M’
• i.e. MITM attackers can change your message without decrypting it

For stream ciphers, the attacker sees:
EncK(M) = K ⊕ M

The attacker can, create
EncK(M’) = EncK(M) ⊕ 1 = K ⊕ (M ⊕ 1)

M’ = M ⊕ 1

If M is a binary answer to “Should we launch missiles now?” The attacker can 
flip the answer!
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Block Cipher

Difference from stream ciphers:
• There is a fixed block size (128 bits for AES)
• Plaintext is divided into blocks of this size
• We encrypt each block separately to produce ciphertext blocks
• The “same” key is used for each block

We must change something,
or we lose IND-CPA due to ciphertext repetition!
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Block Cipher

Advanced Encryption Standard (AES):

Repeat the following for 10 rounds:
1. Derive a round key from the key
2. XOR the round key with the current state (initially, the plaintext)
3. Substitute each byte with another byte according to the S-box
4. Treating the state as a 4x4 matrix, shift the i-th row i-th times
5. Multiply the matrix with a fixed matrix, if not the final round

All steps are designed to scramble the input with the key
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Block Cipher

Some modes of operation:
Electronic codebook (ECB)
• All keys are the same (not IND-CPA – why?)
• Entirely insecure, but it is the default in some crypto libraries

28Plaintext ECB mode



Block Cipher – Counter (CTR)

Counter (CTR)
• Encryption of the x’th key block (M) based on K is:

AES(K||CTR) ⊕ M

• Effectively a stream cipher – the AES() portion serving as the 
keystream

• CTR can be chosen sequentially or randomly
• Can encrypt 2n/2 messages with a length-n key in IND-CPA

• Proof idea: combine birthday attack with the Two-Time Pad 
break
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Block Cipher - CBC

Cipher Block Chaining (CBC)
• k-th Plaintext block is XOR'd with (k-1)-th Ciphertext block before 

encryption
• Encryption is not parallelizable (but decryption is)
• “0th” ciiphertext block is the IV
• It is IND-CPA; proof omitted
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E E E E

Ciphertext
Block 1

Ciphertext
Block 2

Ciphertext
Block 3

Ciphertext
Block 4

Plaintext
Block 1

Plaintext
Block 2

Plaintext
Block 3

Plaintext
Block 4

E is the 128-bit encryption mechanism

⊕ ⊕ ⊕ ⊕

Key Key Key Key

CBC Mode (AES):

IV
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Block Cipher

Includes DES (56-bit), AES (128-bit)
• DES was shown to be too weak in 1998 (short 

key length)
• AES is the current standard; widely used
• AES itself cannot be proven to be IND-CPA 

secure, nor reduced to a presumed hard 
problem

• AES in CBC mode is IND-CPA (assuming AES is a 
unbreakable PRNG)

“Deep crack” DES cracker
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What isn’t IND-CPA?
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Claim. Scytale encryption isn’t IND-CPA.

Proof sketch: The attacker chooses the plaintext “AAAA….A”. Examining the 
returned ciphertext, he decides it is the real plaintext if it has more A’s than a 
threshold, and it is a random plaintext otherwise.

Corollary: Any encryption scheme where the plaintext is a substring of the 
ciphertext is not IND-CPA.

Claim. Vignere cipher isn’t IND-CPA.

Proof sketch: The ciphertext asks the encryption oracle for an encryption of 
“AAAA….A”. Even if an IV is used, this will reveal the key.

Corollary: Any encryption scheme where there exists a plaintext that reveals 
part of the key is not IND-CPA.



In SKE, locking and opening require the same key

Ciphertext

Encryption Decryption

Plaintext Plaintext

What if we want them to require different keys?

Ciphertext

Encryption Decryption

Plaintext Plaintext

This is known as Public Key Encryption

Public Key Encryption (PKE)

E D
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Public Key Signing/Verification

Has two keys for two procedures:

Public key is used for verification

Private key is used for signing

Alice generates both keys.

(They are mathematically related.)

Then, Alice publishes her public key:

Anyone can verify

Only Alice can sign

Anyone can verify that Alice signed this message.

V

S

V
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What if the private key      is leaked?

In practice, the public/private key pair is

short-lived to guarantee forward secrecy

Bootstrapping SKE using PKE (Key Establishment)

1. Alice generates a public/private key pair

2. Alice shares the public encryption key

3. Bob generates a secret key,      encrypts it with 

PKE                    , and sends it to Alice

4. Alice decrypts the secret key

5. The secret key       will be used for SKE from now on

E D

E

D

D

E
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1. Alice and Bob use some g and prime p,
where g generates integers modulo p

2. Alice generates and sends gA mod p

3. Bob generates and sends gB mod p

4. Alice and Bob compute secret key gAB mod p
Alice: (gB mod p)A mod p = gAB mod p
Bob:   (gA mod p)B mod p = gAB mod p

Key Establishment using Diffie-Hellman

Security reduces to the following problem (Computational Diffie-Hellman):

We assume this is hard, though it is easier than the discrete log problem 
(find A/B).

Given g, p, gA mod p, gB mod p, find gAB mod p
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1. Alice and Bob use some g and prime p,
where g generates integers modulo p

2. Alice generates and sends gA mod p. A is her private key

3.       Bob generates and sends gB mod p and M * gAB mod p.

4. Since Alice can compute gAB mod p from gB mod p, 

she can obtain M, the plaintext.

ElGamal

(gB mod p)A mod p = gAB mod p

Let’s play the IND-CPA game. The adversary submits M and gets:
gA mod p, gB mod p, either M * gAB mod p or a random string

If the adversary can correctly guess which one it is, that means she can 
distinguish between the two following pairs (Decisional Diffie-Hellman):

(gA mod p, gB mod p, gAB mod p) and (gA mod p, gB mod p, random) 38



Revisiting Malleability
• Reminder: A cipher is malleable if changes in the ciphertext will 

cause predictable changes in the plaintext

Is ElGamal malleable? The attacker sees:
M * gAB mod p

Let’s say M is the amount of money you’re transferring to someone. If
the attacker multiplies the message by X (mod p)…

• CBC and CTR are also malleable
• We can secure integrity and remove the malleability issue using 

message authentication codes
• Can be built with cryptographic hashes or CBC
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MESSAGE b194 d920 ...
Hash

Cryptographic Hash

Cryptographic hashes are irreversible one-way functions:

Properties:
• Output is small, fixed size
• Different inputs may give same output
• Function is publicly known
Examples: MD5 (insecure!), SHA1, SHA2, SHA3

We will discuss their security after discussing what we want 
them to do.
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Use of Cryptographic Hashes

• Integrity checking against non-malicious adversaries
• HMAC (Hash-Based Message Authentication Code) for integrity 

against malicious adversaries. Send this along with the message:

h(K⊕M)
where K is the secret key and M is the message

• Password storage
• Proof of work (e.g. bitcoins)
• Used in signatures: sign the hash instead of the message
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Use of Cryptographic Hashes

Attacker

M, h(M)

X, Y
Integrity checking
Is h(X) = Y?

• If attacker changes only M or h(M)?
• If there are one or several random bit flips?
• If attacker sets:

X = M’
Y = h(M’)

Attacker

M, h(K⊕M)

X, Y
Integrity checking
Is h(K⊕X) = Y?

• If attacker changes only M or h(M)?
• If there are one or several random bit flips?
• If attacker sets:

X = M’
Y = h(K⊕M’)

Hash integrity checking HMAC integrity checking



Security of Cryptographic Hashes

Pre-image resistance: Given y, it is hard to find x such that 
y = h(x)

• Second pre-image: Given x, hard to find x’ such that h(x) = h(x’)
• If this was easy, signatures wouldn’t work – you could get someone to 

sign A and present that signature as valid for B
• Password storage wouldn’t work either – leaked hashes would allow 

password cracking
• Fundamental property required by proof of work
Collision resistance: It is hard to find any pair m1, m2 such that

h(m1) = h(m2)
• If this was easy, hashes couldn’t be used for signatures
• Weaker version: given m1, can’t find m2 such that h(m1) = h(m2)
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Getting Integrity Directly from Block Ciphers

Counter with CBC-MAC (CCM) mode:
• A mode of operation that achieves both confidentiality and integrity
• CBC-MAC:

• Recall that a MAC is a tag generated based on M and K, such that if 
the attacker changes any bit of M, the MAC will change 
unpredictably unless she knows K

• We can create a tag by encrypting M using CBC with key K and IV 0 
normally, then keeping only the last block as tag

• CCM is just CBC-MAC-then-encrypt with Counter Mode
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You can verify it
with this public
verification key.

How can you trust Alice?

Hello! I am Alice.
Here is my
signature!

Sign    (h(M))
V

V

Public Key Infrastructure
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PGP

Web of Trust:
• Trust is transitive
• If Alice trusts Bob, and Bob trusts Carol, Alice can trust Carol

• Bob signs Carol’s public key to say “I, Bob, trust that this is Carol’s 
public key.”

• Alice can verify that Bob signed this message
• Trust can also be revoked

• Useful if private key is stolen
• Verification keys can be stored in a database
• Bootstrap the system with business cards?
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SSL/TLS

Certificate system:
• By default, browsers will trust a set of Certificate Authorities (CA)
• CA can sign any website's public key; the CA's signature is called a 

certificate
• If a CA is compromised, then they can sign fake certificates

• The website presents its certificate when you connect to it
• Certificates can also be transitive

• A root CA can sign a lower CA’s certificate, allowing the lower CA 
to sign other people’s certificates
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SSL/TLS
Establishing a TLS connection uses many of the tools in this module:
1. Server sends its public verification key to the root CA.
2. Root CA confirms that person really owns the web server.
3. Root CA signs the web server’s public verification key and sends it back (the cert).

(After some time)
4. The client accesses the web server.
5. Server generates an ephemeral PKE key pair.
6. Server sends the cert to client, along with its public verification key, its public encryption key, 
and signs it to avoid tampering.
7. Client checks CA’s signature on cert to verify the server’s public verification key, then uses 
that to verify the server’s public encryption key.
8. Client generates secret key.
9. Client encrypts secret key with server’s public encryption key and sends it to server.
10. Server decrypts to obtain secret key.

From this point onward all communication will use that secret key (most likely 128-bit AES CBC 
with SHA-256 for HMAC). Missing: Protocol negotiation, client/server random, etc. 48



Attacking SSL/TLS

Padding Oracle attack
• Exploitable in SSL 3.0, even some much later versions of TLS by 

exploiting protocol negotiation (POODLE)
• Weakness of CBC encryption combined with certain padding
• Plaintext:

• Encryption:

• Decryption:

x1 x2 x3

y1=E(IV⊕x1) y2=E(y1⊕x2) y3=E(y2⊕x3)y0 = IV

x1=IV⊕D(y1) x2=y1⊕D(y2) x3=y2⊕D(y3)y0 = IV
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Attacking SSL/TLS

Padding Oracle attack
• A padding oracle tells you if a submitted ciphertext has incorrect 

padding. Correct padding:

• To find the last (16th) byte of D(y1) (which gives us x16 = IV16⊕D(y16)):

1. Create a 15-byte random string, an incremental byte i, attach to y1:

2. Submit this to the padding oracle.

• If oracle says “yes”, that means the last byte of (r|| i )⊕ D(y1) is 
1, or the last 2 bytes are 22, or the last 3 bytes are 333…
• We can distinguish between these cases by submitting the 

same string but changing one of the r bytes
• If oracle says “no”, increment i. 

(IV) C084….AC2

11 bytes +5 bytes of padding

55555

r i y1
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Attacking SSL/TLS

Padding Oracle attack
• To find the other bytes of D(y1), work backwards from the last byte, 

repeating the algorithm, ensuring that the next byte(s) are set 
correctly (e.g. next step is 14 bytes of r, 2 bytes of i)

• To find D(yn), repeat the same process with r||i || D(yn); this 
requires knowledge of xn-1

• Why is this insecure even though CBC is IND-CPA?
• Padding oracles are not covered by encryption oracles
• But it is reasonable to assume padding oracles – SSL servers 

returned different error code for wrong padding
• Padding oracles are covered by decryption oracles, which is IND-

CCA2
• To prevent: Don’t say padding is wrong (or encrypt-then-MAC) 51



Attacking SSL/TLS

BEAST attack
• Attack scenario: Attacker wants to login as client at server (e.g. 

bank.com). Requires two things:
1. Attacker is MITM between client and bank.com
2. Attacker gets client to visit attacker’s website and runs a script

• Script says: visit bank.com/AAAAAA….A
• Client will send a packet visiting this page with the cookie attached 

to it
• By controlling the number of A’s, the attacker has precise control 

over how many bytes of the cookie fall into its own block. Initially 
we want 1
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Attacking SSL/TLS

BEAST attack
• Objective is to guess m1, part of the cookie:

• Ask the encryption oracle (bank.com) to encrypt, for some i:

(Server will use y1 as its next IV in old SSL CBC because it is not re-
randomized)

• Servers are good encryption oracles (even though they are not 
cooperating with the attacker): e.g. Search for “MSG” on the 
website, the server will return an encrypted version of “Your results 
for MSG:”, which can contain Enc(MSG)

r = “AA….A” m1 m2…m17

y0⊕y1⊕r||i

53

y0 = E(IV⊕x0) y1 = E(y0⊕x1)IV

Plaintext (Client to Server):

Ciphertext:



Attacking SSL/TLS

BEAST attack
• Encryption oracle (server) will output:

If i = m1:
E(y1⊕(y0⊕y1⊕r||i))

= E(y0⊕r||m1)
= E(y0⊕x1) = y1

• So if the guess is correct, the output will be y1 || y1

• If not, increment i and guess again
• After guessing one byte, move the message so that 2 bytes are 

in their own block – and repeat

54

E(y1⊕(y0⊕y1⊕r||i))y1 (used as IV)



Attacking SSL/TLS

BEAST attack
• Attack can be mitigated in a wide range of ways:

• Don’t reuse the IV: generate it explicitly and randomly
• Done in TLS 1.1; first practical demonstration was 5 years 

after TLS 1.1 was introduced
• Consume the insecure IV by adding one extra empty 

random block
• Original exploit uses a WebSocket bug that has been 

patched
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Attacking SSL/TLS

Logjam attack
• The number sieve algorithm for finding a discrete log is time-

consuming, but three of its four steps can be shared between all 
groups of a given size p (and the last step is cheap)

• For 512-bit primes, Adrian et al. needed only a week with several 
thousand CPU cores to pre-compute (and one minute for the last 
step)

• The key problem is that most implementations used the same group 
of the same prime size p

• Fixes: Use larger primes, generate your own primes
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