1200

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

Differential Privacy via Wavelet Transforms

Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke

Abstract—Privacy-preserving data publishing has attracted considerable research interest in recent years. Among the existing
solutions, e-differential privacy provides the strongest privacy guarantee. Existing data publishing methods that achieve e-differential
privacy, however, offer little data utility. In particular, if the output data set is used to answer count queries, the noise in the query
answers can be proportional to the number of tuples in the data, which renders the results useless. In this paper, we develop a data
publishing technique that ensures e-differential privacy while providing accurate answers for range-count queries, i.e., count queries
where the predicate on each attribute is a range. The core of our solution is a framework that applies wavelet transforms on the data
before adding noise to it. We present instantiations of the proposed framework for both ordinal and nominal data, and we provide a
theoretical analysis on their privacy and utility guarantees. In an extensive experimental study on both real and synthetic data, we show

the effectiveness and efficiency of our solution.

Index Terms—Privacy-preserving data publishing, differential privacy, wavelets.

1 INTRODUCTION

HE boisterous sea of liberty is never without a wave.—
Thomas Jefferson.

Numerous organizations, like census bureaus and
hospitals, maintain large collections of personal information
(e.g., census data and medical records). Such data collec-
tions are of significant research value, and there is much
benefit in making them publicly available. Nevertheless, as
the data are sensitive in nature, proper measures must be
taken to ensure that its publication does not endanger the
privacy of the individuals that contributed the data. A
canonical solution to this problem is to modify the data
before releasing them to the public, such that the modifica-
tion prevents inference of private information while
retaining statistical characteristics of the data.

A plethora of techniques have been proposed for
privacy-preserving data publishing (see [1], [2] for surveys).
Existing solutions make different assumptions about the
background knowledge of an adversary who would like to
attack the data—i.e., to learn the private information about
some individuals. Assumptions about the background
knowledge of the adversary determine what types of
attacks are possible [3], [4], [5]. A solution that makes very
conservative assumptions about the adversary’s back-
ground knowledge is e-differential privacy [6]. Informally,
e-differential privacy requires that the data to be published
should be generated using a randomized algorithm G, such
that the output of G is not very sensitive to any particular
tuple in the input.

e X. Xino is with the School of Computer Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798.
E-mail: xkxino@ntu.edu.sg.

o G. Wang and |. Gehrke are with the Department of Computer Science,
Cornell University, Ithaca, NY 14853.

E-mail: {guoz, johannes}@cs.cornell.edu.

Manuscript received 16 Mar. 2010; revised 21 July 2010; accepted 18 Aug.
2010; published online 15 Dec. 2010.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDESI-2010-03-0156.

Digital Object Identifier no. 10.1109/TKDE.2010.247.

1041-4347/11/$26.00 © 2011 IEEE

The simplest method to enforce e-differential privacy, as
proposed by Dwork etal. [6], is to first compute the frequency
distribution of the tuples in the input data and then publish a
noisy version of the distribution. For example, given the
medical records in Table 1, Dwork et al.’s method first maps
the records to the frequency matrix in Table 2, where each entry
in the first (second) column stores the number of diabetes
(nondiabetes) patients in Table 1 that belong to a specific age
group. After that, Dwork et al.’s method adds independent
noise' with ©(1) variance to each entry in Table 2 (we will
review this in detail in Section 2.2) and then publishes the
noisy frequency matrix.

Intuitively, the noisy frequency matrix preserves privacy,
as it conceals the exact data distribution. In addition, the
matrix can provide approximate results for all queries about
Table 1. For instance, if a user wants to know the number of
diabetes patients with age under 50, then she can obtain an
approximate answer by summing up the first three entries
in the first column of the noisy frequency matrix.

Motivation. Dwork et al.’s method provides reasonable
accuracy for queries about individual entries in the
frequency matrix, as it injects only a small noise (with a
constant variance) into each entry. For aggregate queries
that involve a large number of entries, however, Dwork
et al.’s method fails to provide useful results. In particular,
for a count query answered by taking the sum of a constant
fraction of the entries in the noisy frequency matrix, the
approximate query result has a ©(m) noise variance, where
m denotes the total number of entries in the matrix. Note
that m is typically an enormous number, as practical data
sets often contain multiple attributes with large domains.
Hence, a ©(m) noise variance can render the approximate
result meaningless, especially when the actual result of the
query is small.

Our contributions. In this paper, we introduce privacy-
preserving wavelet (Privelet), a data publishing technique
that not only ensures e-differential privacy, but also provides

1. Throughout the paper, we use the term “noise” to refer to a random
variable with a zero mean.

Published by the IEEE Computer Society



XIAO ET AL.: DIFFERENTIAL PRIVACY VIA WAVELET TRANSFORMS

TABLE 1
Medical Records

Age | Has Diabetes?
< 30 No
< 30 No
30-39 No
40-49 No
40-49 Yes
40-49 No
50-59 No
> 60 Yes

accurate results for all range-count queries, i.e., count queries
where the predicate on each attribute is a range. Specifically,
Privelet guarantees that any range-count query can be
answered with a noise variance that is polylogarithmic in
m. This significantly improves over the O(m) noise variance
bound provided by Dwork et al.’s method.

The effectiveness of Privelet results from a novel
application of wavelet transforms, a type of linear transfor-
mations that has been widely adopted for image processing
[7] and approximate query processing [8], [9]. As with
Dwork et al.’s method, Privelet preserves privacy by
modifying the frequency matrix M of the input data.
Instead of injecting noise directly into M, however, Privelet
first applies a wavelet transform on M, converting M to
another matrix C. Privelet then adds a polylogarithmic noise
to each entry in C' and maps C back to a noisy frequency
matrix M*. The matrix M* thus obtained has an interesting
property: The result of any range-count query on A/* can be
expressed as a weighted sum of a polylogarithmic number
of entries in C. Furthermore, each of these entries con-
tributes at most polylogarithmic noise variance to the
weighted sum. Therefore, the variance of the noise in the
query result is bounded by a polylogarithm of m.

The remainder of the paper is organized as follows:
Section 2 gives a formal problem definition and reviews
Dwork et al.’s solution. In Section 3, we present the Privelet
framework for incorporating wavelet transforms in data
publishing, and we establish a sufficient condition for
achieving e-differential privacy under the framework. We
then instantiate the framework with four differential
wavelet transforms. Our first instantiation in Section 4 is
based on the Haar wavelet transform [7], and it is applicable
for one-dimensional ordinal data. Our second instantiation
in Section 5 is based on a novel nominal wavelet transform,
which is designed for tables with a single nominal attribute.
Our third instantiation in Section 6 is a composition of the
first two and can handle multidimensional data with both

TABLE 2
Frequency Matrix

Has Diabetes?

Yes No
< 30 0 2
30-39 0 1
Age 40-49 1 2
50-59 0 1
> 60 1 0

1201

Any

e e

North America South America

— 1 I

USA Canada oo« Brazil Argentina eee

Fig. 1. A hierarchy of countries.

ordinal and nominal attributes. Our fourth instantiation in
Section 7 further improves the third instantiation with a
novel heuristic approach. We conduct a rigorous analysis
on the properties of each instantiation, and we provide
theoretical bounds on privacy and utility guarantees, as
well as time complexities. In Section 8, we demonstrate the
effectiveness and efficiency of Privelet through extensive
experiments on both real and synthetic data. Section 9
discusses related work. In Section 10, we conclude with
directions for future work.

2 PRELIMINARIES

2.1 Problem Definition

Consider that we want to publish a relational table 7" that
contains d attributes A, As, ..., Ay, each of which is either
ordinal (i.e., discrete and ordered) or nominal (i.e., discrete
and unordered). Following previous work [10], [11], we
assume that each nominal attribute A; in 7' has an
associated hierarchy, which is a tree where 1) each leaf is a
value in the domain of A;, and 2) each internal node
summarizes the leaves in its subtree. Fig. 1 shows an
example hierarchy of countries. We define n as the number
of tuples in 7', and m as the size of the multidimensional
domain on which T is defined, i.e., m = H?:] | A;].

We aim to release 7" using an algorithm that ensures e-
differential privacy.

Definition 1 (e-Differential Privacy [6]). A randomized
algorithm G satisfies e-differential privacy, if 1) for any
two tables Ty and T» that differ only in one tuple, and 2) for
any output O of G, we have

Pr{G(T1) = 0} < ¢ - Pr{G(Ty) = O}.

We optimize the utility of the released data for OLAP-
style range-count queries in the following form:

SELECT COUNT(*) FROM T
WHEREA1651 ANDAQGSQAND... ANDAdGSd

For each ordinal attribute A;, S; is an interval defined on the
domain of A;. For each nominal attribute A;, S; is a set that
contains either 1) a leaf in the hierarchy of A; or 2) all leaves in
the subtree of an internal node in the hierarchy of A;—this is
standard for OLAP-style navigation using roll-up or drill-
down. For example, given the hierarchy in Fig. 1, examples of
S;are {USA}, {Canada}, and the set of all countries in North
America. Range-count queries are essential for various
analytical tasks, e.g.,, OLAP, association rule mining and
decision tree construction over a data cube [12].

2.2 Previous Approaches

As demonstrated in Section 1, the information in T can be
represented by a d-dimensional frequency matrix M with



1202

m entries, such that 1) the ith (: € [1, d]) dimension of M is
indexed by the values of A;, and 2) the entry in M with a
coordinate vector (z1, x9, ..., z4) stores the number of tuples
t in T such that t = (2,29, ...,24). (This is the lowest level
of the data cube of 7' [12].) Observe that any range-count
query on T' can be answered using M, by summing up the
entries in M whose coordinates satisfy all query predicates.

Dwork et al. [6] prove that M can be released in a
privacy-preserving manner by adding a small amount of
noise to each entry in M independently. Specifically, if the
noise 7 follows a Laplace distribution with a probability
density function

1 —|x
Prin=u} = gre ¥, W

then the noisy frequency matrix ensures (2/\)-differential
privacy. We refer to A as the magnitude of the noise. Note
that Laplace noise with magnitude X has a variance 2)%.

Privacy analysis. To explain why Dwork et al.’s method
ensures privacy, suppose that we arbitrarily modify a tuple
in 7. In that case, the frequency matrix of 7" will change in
exactly two entries, each of which will be decreased or
increased by one. For example, assume that we modify the
first tuple in Table 1, by setting its age value to “30-39.”
Then, in the frequency matrix in Table 2, the first (second)
entry of the second column will be decreased (increased) by
one. Intuitively, such small changes in the entries can be
easily offset by the noise added to the frequency matrix. In
other words, the noisy matrix is insensitive to any
modification to a single tuple in 7. Thus, it is difficult for
an adversary to infer private information from the noisy
matrix. More formally, Dwork et al.’s method is based on
the concept of sensitivity.

Definition 2 (Sensitivity [6]). Let F' be a set of functions, such
that the output of each function f € F' is a real number. The
sensitivity of F is defined as

S(F) =max» |f(T1) — f(T)], (2)

where T and Ty are any two tables that differ in only one tuple.

Note that the frequency matrix M of T' can be regarded
as the outputs of a set of functions, such that each function
maps 7' to an entry in M. Modifying any tuple in 7" will only
change the values of two entries (in M) by one. Therefore,
the set of functions corresponding to M has a sensitivity of
2. The following theorem shows a sufficient condition for
e-differential privacy.

Theorem 1 ([6]). Let F' be a set of functions with a sensitivity
S(F). Let G be an algorithm that adds independent noise to the
output of each function in F, such that the noise follows a
Laplace distribution with magnitude X. Then, G satisfies
e-differential privacy with e = (S(F)/\).

By Theorem 1, Dwork et al.’s method guarantees (2/\)-
differential privacy, since M corresponds to a set of queries
on 7' with a sensitivity of 2.

Utility analysis. Suppose that we answer a range-count
query using a noisy frequency matrix M* generated by

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

Dwork et al.’s method. The noise in the query result has a
variance ©(m/¢?) in the worst case. This is because 1) each
entry in M* has a noise variance 8/¢® (by (1) and € = 2/)),
and 2) a range-count query may cover up to m entries in
M?*. Therefore, although Dwork et al.’s method provides
reasonable accuracy for queries that involve a small number
of entries in M*, it offers unsatisfactory utility for large
queries that cover many entries in M*.

3 THE PRIVELET FRAMEWORK

This section presents an overview of our Privelet technique.
We first clarify the key steps of Privelet in Section 3.1, and
then we provide, in Section 3.2, a sufficient condition for
achieving e-differential privacy with Privelet.

3.1 Overview of Privelet

Our Privelet technique takes as input a relational table 7" and
a parameter A\ and outputs a noisy version A" of the
frequency matrix A of T. At a high level, Privelet works in
three steps as follows:

First, it applies a wavelet transform on M. Generally
speaking, a wavelet transform is an invertible linear
function, i.e., it maps M to another matrix C, such that
1) each entry in C is a linear combination of the entries in
M, and 2) M can be losslessly reconstructed from C. The
entries in C' are referred to as the wavelet coefficients. Note
that wavelet transforms are traditionally only defined for
ordinal data, and we create a special extension for nominal
data in our setting.

Second, Privelet adds independent Laplace noise to each
wavelet coefficient in a way that ensures e-differential
privacy. This results in a new matrix C* with noisy
coefficients. In the third step, Privelet (optionally) refines
C* and then maps C* back to a noisy frequency matrix M*,
which is returned as the output. The refinement of C* may
arbitrarily modify C*, but it does not utilize any information
from T or M. In other words, the third step of Privelet
depends only on C*. This ensures that Privelet does not leak
any information about 7, except for what has been
disclosed in C*. Our solutions in Sections 5 and 7
incorporate some refinement procedures to achieve better
utility for range-count queries.

3.2 Privacy Condition

The privacy guarantee of Privelet relies on its second step,
where it injects Laplace noise into the wavelet coefficient
matrix C. To understand why this achieves e-differential
privacy, recall that, even if we arbitrarily replace one tuple
in the input data, only two entries in the frequency matrix
M will be altered. In addition, each of those two entries will
be offset by exactly one. This will incur only linear changes
in the wavelet coefficients in C, since each coefficient is a
linear combination of the entries in M. Intuitively, such
linear changes can be concealed, as long as an appropriate
amount of noise is added to C.

In general, the noise required for each wavelet coefficient
varies, as each coefficient reacts differently to changes in M.
Privelet decides the amount of noise for each coefficient
based on a weight function VW, which maps each coefficient to
a positive real number. In particular, the magnitude of the



XIAO ET AL.: DIFFERENTIAL PRIVACY VIA WAVELET TRANSFORMS

noise for a coefficient c is always set to A/W(c), i.e., a larger
weight leads to a smaller noise. To analyze the privacy
implication of such a noise injection scheme, we introduce
the concept of generalized sensitivity.

Definition 3 (Generalized Sensitivity). Let F' be a set of
functions, each of which takes as input a matrix and outputs a
real number. Let W be a function that assigns a weight to each
function f e F. The generalized sensitivity of F with
respect to W is defined as the smallest number p such that

S V) - F(M) = (M) < p- |M = M|y,

fer

where M and M’ are any two matrices that differ in only one
entry, and ||M — M'||y =3 cp_ar V| s the Ly distance
between M and M’

Generalized sensitivity captures the notion of sensitivity
(in Definition 2) as a special case. In particular, for any set F'
of functions, the sensitivity of F' equals the generalized
sensitivity of F' with respect to a function W that assigns
each f € F the same weight.

Observe that each wavelet coefficient ¢ can be regarded
as the output of a function f that maps the frequency matrix
M to a real number. Thus, the wavelet transform can be
regarded as the set of functions corresponding to the
wavelet coefficients. The weight W(c) we assign to each
coefficient ¢ can be thought of as a weight given to the
function associated with c¢. Intuitively, the generalized
sensitivity captures the “weighted” sensitivity of the
wavelet coefficients with respect to changes in M. The
following lemma establishes the connection between gen-
eralized sensitivity and e-differential privacy:

Lemma 1. Let F be a set of functions that has a generalized
sensitivity p with respect to a weight function W. Let G be a
randomized algorithm that takes as input a table T and
outputs a set {f(M) +n(f) | f € F} of real numbers, where
M is the frequency matrix of T, and n(f) is a random variable
that follows a Laplace distribution with magnitude \/W(f).
Then, G satisfies (2p/\)-differential privacy.

The proofs for the theorems, lemmas, and corollaries in
this paper can be found in the Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2010.247. By
Lemma 1, if a wavelet transform has a generalized
sensitivity p with respect to weight function W, then we
can achieve e-differential privacy by adding to each wavelet
coefficient ¢ some Laplace noise with magnitude 2p/WW(c).
This justifies the noise injection scheme of Privelet.

4 PRIVELET FOR ONE-DIMENSIONAL ORDINAL
DATA

This section instantiates the Privelet framework with the
one-dimensional Haar wavelet transform [7] (HWT), a
popular technique for processing one-dimensional ordinal
data. The one-dimensional HWT requires the input to be a
vector that contains totally ordered elements. Accordingly,
we assume that the frequency matrix M has a single ordinal

1203

Vi Vo V3 W4

Vs Ve V7 Vg
Fig. 2. One-dimensional Haar wavelet transform.

dimension. For ease of exposition, we also assume that the
number m of entries in M equals 2’ (I € IN)—this can be
ensured by inserting dummy values into A [7]. We first
explain the HWT in Section 4.1 and then present the
instantiation of Privelet in Section 4.2.

4.1 One-Dimensional Haar Wavelet Transform

The HWT converts M into 2! wavelet coefficients as follows:
First, it constructs a full binary tree R with 2! leaves, such
that the ith leaf of R equals the ith entry in M (i € [1,2]). It
then generates a wavelet coefficient ¢ for each internal node
N in R, such that ¢ = (a; —a2)/2, where a; (a2) is the
average value of the leaves in the left (right) subtree of V.
After all internal nodes in R are processed, an additional
coefficient (referred to as the base coefficient) is produced by
taking the mean of all leaves in R. For convenience, we refer
to R as the decomposition tree of M, and we slightly abuse
notation by not distinguishing between an internal node in
R and the wavelet coefficient generated for the node.

Example 1. Fig. 2 illustrates an HWT on a one-dimensional
frequency matrix M with eight entries vy,...,vs. Each
number in a circle (square) shows the value of a wavelet
coefficient (an entry in M). The base coefficient ¢ equals
the mean 5.5 of the entries in M. The coefficient ¢; has a
value —0.5, because 1) the average value of the leaves in its
left (right) subtree equals 5 (6), and 2) (5 — 6)/2 = —0.5.

Given the Haar wavelet coefficients of M, any entry v in
M can be easily reconstructed. Let ¢ be the base coefficient,
and ¢ (i € [1,1]) be the ancestor of v at level ¢ of the
decomposition tree R (we regard the root of R as level 1).
We have

l

V= CO+Z(gi - Ci), (3)

=1
where g; equals 1 (—1) if v is in the left (right) subtree of ;.

Example 2. In the decomposition tree in Fig. 2, the leaf v,
has three ancestors ¢; = —0.5, ¢o = 1, and ¢; = 3. Note
that vy is in the right (left) subtree of ¢4 (¢ and ¢),
and the base coefficient ¢y equals 5.5. We have
(%] :3260+61+CQ—C4.

4.2 Instantiation of Privelet

Privelet with the one-dimensional HWT follows the three-
step paradigm introduced in Section 3.1. Given a parameter
A and a table 7" with a single ordinal attribute, Privelet first
computes the Haar wavelet coefficients of the frequency
matrix M of T It then adds to each coefficient ¢ a random



1204

Laplace noise with magnitude A\/W (), where Wiya,, is a
weight function defined as follows: For the base coefficient
¢, Whiaar(c) =m; for a coefficient ¢; at level i of the
decomposition tree, Wiraa,(c;) = 2/-*1. For example, given
the wavelet coefficients in Fig. 2, Wy, would assign
weights 8, 8, 4, and 2 to ¢, ¢i, ¢z, and ¢4, respectively. After
the noisy wavelet coefficients are computed, Privelet
converts them back to a noisy frequency matrix M* based
on (3), and then it terminates by returning A*.

This instantiation of Privelet with the one-dimensional
HWT has the following property.

Lemma 2. The one-dimensional HWT has a generalized
sensitivity of 1+ log, m with respect to the weight function
WH(m,r-

By Lemmas 1 and 2, Privelet with the one-dimensional
HWT ensures e-differential privacy with e = 2(1 + log, m)/\,
where ) is the input parameter. On the other hand, Privelet
also provides strong utility guarantee for range-count
queries, as shown in the following lemma:

Lemma 3. Let C be a set of one-dimensional Haar wavelet
coefficients such that each coefficient ¢ € C' is injected with
independent noise with a variance at most (o/Wiaar(c))’. Let
M* be the noisy frequency matrix reconstructed from C. For
any range-count query answered using M*, the variance of
noise in the answer is at most (2 + logy |[M*|)/2 - o>

By Lemmas 2 and 3, Privelet achieves e-differential
privacy while ensuring that the result of any range-count
query has a noise variance bounded by

O((logym)*/€*).  (4)

In contrast, as discussed in Section 2.2, with the same
privacy requirement, Dwork et al.’s method incurs a noise
variance of O(m/e?) in the query answers.

Before closing this section, we point out that Privelet with
the one-dimensional HWT has an O(n + m) time complexity
for construction. This follows from the facts that 1) mapping
T to M takes O(m + n) time, 2) converting M to and from the
Haar wavelet coefficients incur O(m) overhead [7], and
3) adding Laplace noise to the coefficients takes O(m) time.

(2 +logy m) - (24 2log, m)* /¢ =

5 PRIVELET FOR ONE-DIMENSIONAL NOMINAL
DATA

This section extends Privelet for one-dimensional nominal
data by adopting a novel nominal wavelet transform.
Section 5.1 introduces the new transform, and Section 5.2
explains the noise injection scheme for nominal wavelet
coefficients. Section 5.3 analyzes the privacy and utility
guarantees of the algorithm and its time complexity.
Section 5.4 compares the algorithm with an alternative
solution that employs the HWT.

5.1 Nominal Wavelet Transform

Existing wavelet transforms are only designed for ordinal
data, i.e., they require that each dimension of the input
matrix needs to have a totally ordered domain. Hence, they
are not directly applicable on nominal data, since the values

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

H

Vi V2 V3 V4 V5 Vg

M[9]3]16[2]8]2]

V1 V2 V3 V4 V5 Vg Vi A %) V3 V4 Vs Ve

Fig. 3. A nominal wavelet transform.

of a nominal attribute A are not totally ordered. One way to
circumvent this issue is to impose an artificial total order on
the domain of A, such that for any internal node N in the
hierarchy of A, the set of leaves in the subtree of N
constitutes a contiguous sequence in the total order.

For example, given a nominal attribute A with the
hierarchy H in Fig. 3, we impose on A a total order
v < U9 < -+ < vg. As such, A is transformed into an ordinal
attribute A’. Recall that for a nominal attribute, the range-
count query predicate “A € S” has a special structure: S
either contains 1) a leaf in the hierarchy of A or 2) all leaves
in the subtree of an internal node in the hierarchy of A.
Therefore, S is always a contiguous range in the imposed
total order of A. With this transformation, we can apply
Privelet with the HWT on any one-dimensional nominal
data. The noise variance bound thus obtained is
O((logy m)° /) (see (4)).

While using the HWT is one possible solution, Privelet
does not stop here. We will show how to improve the above
O((log, m)® /€?) bound to O(h?/€®), where h is the height of
the hierarchy H on the nominal data. (Note that h < log, m
holds for any hierarchy where each internal node has at least
two children.) This improvement can result in a reduction of
noise variance by an order of magnitude or more in practice,
as we will discuss in Section 5.4. The core of our solution is a
novel wavelet transform that creates a different decomposi-
tion tree for generating wavelet coefficients.

A first thought for a different decomposition tree might
be to use the hierarchy H, i.e. to generate wavelet
coefficients from each internal node N in H. Intuitively, if
N has only two children, then we may produce a coefficient
c from N as in the HWT, i.e., we first compute the average
value a; (ap) of the leaves in the left (right) subtree of N, and
then we set ¢ = (a1 + ag)/2. But in case that N has & (k > 2)
children, it is unclear how the wavelet coefficients should
be computed. A straight forward approach is to generate
one coefficient from each pair of subtrees of N. However,
that will result in (é) coefficients, which is undesirable
when £ is large. Is it possible to generate coefficients
without relying on pairwise comparison of subtrees? We
answer this question positively with the introduction of the
nominal wavelet transform.

Given a one-dimensional frequency matrix M and a
hierarchy H on the entries in M, the nominal wavelet
transform first constructs a decomposition tree R from H by
attaching a child node N, to each leaf node N in H. The
value of N, is set to the value of the entry in M that
corresponds to N. For example, given the hierarchy H in the
left-hand side of Fig. 3, the decomposition tree R con-
structed from H is as in right-hand side of the figure. In the



XIAO ET AL.: DIFFERENTIAL PRIVACY VIA WAVELET TRANSFORMS

second step, the nominal wavelet transform computes a
wavelet coefficient for each internal node of R as follows:
The coefficient for the root node (referred to as the base
coefficient) is set to the sum of all leaves in its subtree, also
called the leaf-sum of the node. For any other internal node,
its coefficient equals its leaf-sum minus the average leaf-
sum of its parent’s children.

Given these nominal wavelet coefficients of M, each entry
v in M can be reconstructed using the ancestors of v in the
decomposition tree R. In particular, let ¢; be the ancestor of v
in the (i 4+ 1)th level of R, and f; be the fan-out of ¢;, we have

h—2 h—2 1
’U—C),,1+Z<C7; H), (5)
=0 =i fi

where h is the height of the hierarchy H on M. To
understand (5), recall that ¢, equals the leaf-sum of the root
in R, while ¢;, (k € [1, h — 1]) equals the leaf-sum of ¢; minus
the average leaf-sum of ¢;_;’s children. Thus, the leaf-sum
of ¢ equals ¢ +c¢/fo, the leaf-sum of ¢, equals
e + (a1 + ¢/ fo)/ f1, and so on. It can be verified that the
leaf-sum of ¢;_; equals exactly the right-hand side of (5).
Since v is the only leaf of ¢;,_; in R, (5) holds.

Example 3. Fig. 3 illustrates a one-dimensional frequency
matrix M, a hierarchy H associated with M, and a
nominal wavelet transform on M. The base coefficient
¢o = 30 equals the sum of all leaves in the decomposition
tree. The coefficient ¢; equals 3, because 1) it has a leaf-
sum 18, 2) the average leaf-sum of its parent’s children
equals 15, and 3) 18 — 15 = 3.

In the decomposition tree in Fig. 3, the entry v; has three
ancestors, namely, ¢, ¢;, and c3, which are at levels 1, 2,
and 3 of decomposition tree, respectively. Furthermore,
the fan-out of ¢y and ¢; equal 2 and 3, respectively. We
havev; =9 =c¢3 +¢o/2/3 +¢1/3.

Note that our novel nominal wavelet transform is over-
complete: The number m’ of wavelet coefficients we generate
is larger than the number m of entries in the input frequency
matrix M. In particular, m’ — m equals the number of internal
nodes in the hierarchy H on M. The overhead incurred by
such overcompleteness, however, is usually negligible, as the
number of internal nodes in a practical hierarchy H is small
compared to the number of leaves in H.

5.2 Instantiation of Privelet

We are now ready to instantiate Privelet for one-dimen-
sional nominal data. Given a parameter A and a table 7" with
a single nominal attribute, we first apply the nominal
wavelet transform on the frequency matrix M of T. After
that, we inject into each nominal wavelet coefficient ¢ a
Laplace noise with magnitude \/Wpy,n(c). Specifically,
Whiom(c) =1 if ¢ is the base coefficient, otherwise
Whom(c) = f/(2f —2), where f is the fan-out of ¢’s parent
in the decomposition tree.

Before converting the wavelet coefficients back to a noisy
frequency matrix, we refine the coefficients with a mean
subtraction procedure. In particular, we first divide all but
the base coefficients into disjoint sibling groups, such that
each group is a maximal set of noisy coefficients that have

1205

the same parent in the decomposition tree. For example, the
wavelet coefficients in Fig. 3 can be divided into three
sibling groups: {ci, ¢}, {es,ca,05}, and {cg,c7,c8}. After
that, for each sibling group, the coefficient mean is
computed and then subtracted from each coefficient in the
group. Finally, we reconstruct a noisy frequency matrix M*
from the modified wavelet coefficients (based on (5)), and
we return M* as the output.

The mean subtraction procedure is essential to the utility
guarantee of Privelet that we will prove in Section 5.2. The
intuition is that, after the mean subtraction procedure, all
noisy coefficients in the same sibling group sum up to zero;
as such, for any nonroot node N in the decomposition tree,
the noisy coefficient corresponding to N still equals the
noisy leaf-sum of N minus the average leaf-sum of the
children of N’s parent; in turn, this ensures that the
reconstruction of M* based on (5) is meaningful.

We emphasize that the mean subtraction procedure does
not rely on any information in 7' or M; instead, it is
performed based only on the noisy wavelet coefficients.
Therefore, the privacy guarantee of M* depends only on the
noisy coefficients generated before the mean subtraction
procedure, as discussed in Section 3.

5.3 Theoretical Analysis

To prove the privacy guarantee of Privelet with the nominal
wavelet transform, we first establish the generalized
sensitivity of the nominal wavelet transform with respect
to the weight function Wy, used in the noise injection step.

Lemma 4. The nominal wavelet transform has a generalized
sensitivity of h with respect to Wy, where h the height of the
hierarchy associated with the input frequency matrix.

By Lemmas 1 and 4, given a one-dimensional nominal
table 7"and a parameter ), Privelet with the nominal wavelet
transform ensures e-differential privacy with e = 2h/),
where £ is the height of the hierarchy associated with 7.

Lemma 5. Let C' be a set of nominal wavelet coefficients such
that each ¢’ € C' contains independent noise with a variance at
most (o/Wnom(c'))?. Let C* be a set of wavelet coefficients
obtained by applying a mean subtraction procedure on C', and
M* be the noisy frequency matrix reconstructed from C*. For
any range-count query answered using M*, the variance of the
noise in the answer is less than 40>,

By Lemmas 4 and 5, when achieving e-differential
privacy, Privelet with the nominal wavelet transform
guarantees that each range-count query result has a noise
variance at most

4-2-(2h)* /& = O(h?/€2). (6)

As h < log, m holds in practice, the above O(h?/€?) bound
significantly improves upon the O(m/€®) bound given by
previous work.

Privelet with the nominal wavelet transform runs in
O(n+m) time. In particular, computing M from T takes
O(n) time; the nominal wavelet transform on M has an
O(m) complexity. The noise injection step incurs O(m)
overhead. Finally, with a breadth-first traversal of the
decomposition tree R, we can complete both the mean



1206

subtraction procedure and the reconstruction of the noisy
frequency matrix. Such a breadth-first traversal takes
O(m) time under the realistic assumption that the number
of internal nodes in R is O(m).

5.4 Nominal Wavelet Transform versus Haar
Wavelet Transform

As discussed in Section 5.1, Privelet with the HWT can
provide an O((log, m)®/¢*) noise variance bound for one-
dimensional nominal data by imposing a total order on the
nominal domain. Asymptotically, this bound is inferior to
the O(h?/€?) bound in (6), but how different are they in
practice? To answer this question, let us consider the
nominal attribute Occupation in the Brazil census data set
used in our experiments (see Section 8 for details). It has a
domain with m = 512 leaves and a hierarchy with three
levels. Suppose that we apply Privelet with the one-
dimensional HWT on a data set that contains Occupation
as the only attribute. Then, by (4), we can achieve a noise
variance bound of

(24 logy m) - (24 2logy m)* /€ = 74,400/,

In contrast, if we use Privelet with the nominal wavelet
transform, the resulting noise variance is bounded by

4-2-(2n)% ) = 288/¢,

i.e., we can obtain a 15-fold reduction in noise variance. Due
to the superiority of the nominal wavelet transform over the
straightforward HWT, in the remainder of the paper, we
will always use the former for nominal attributes.

On the other hand, for ordinal attributes, we will always
apply the HWT instead of the nominal wavelet transform.
This is because, Privelet with the nominal wavelet transform
only optimizes the results of the queries that correspond to
the nodes in the hierarchy of the attribute. As a conse-
quence, it is unsuitable for ordinal attributes, since there
does not exist a hierarchy on an ordinal attribute that can
capture the quadratic number of possible range-count
queries on the ordinal domain.

6 MULTIDIMENSIONAL PRIVELET

This section extends Privelet for multidimensional data.
Section 6.1 presents our multidimensional wavelet trans-
form, which serves as the basis of the new instantiation of
Privelet in Section 6.2. Section 6.3 analyzes properties of the
new instantiation, while Section 6.4 further improves its
utility guarantee.

6.1 Multidimensional Wavelet Transform

The one-dimensional wavelet transforms can be extended to
multidimensional data using standard decomposition [7],
which works by applying the one-dimensional wavelet
transforms along each dimension of the data in turn. More
specifically, given a frequency matrix M with d dimensions,
we first divide the entries in M into one-dimensional vectors,
such that each vector contains a maximal set of entries that
have identical coordinates on all but the first dimensions. For
each vector V, we convert it into a set S of wavelet coefficients
using the one-dimensional Haar or nominal wavelet trans-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

Vi1 V12 1 1012
JPIRAE:! . [6]2]

115

V21 V22 !

Fig. 4. Multidimensional wavelet transform.

form, depending on whether the first dimension of M is
ordinal or nominal. After that, we store the coefficients in S in
avector V', where the coefficients are sorted based on a level-
order traversal of the decomposition tree (the base coefficient
always ranks first). The ith (i € [1,5]) coefficient in V' is
assigned d coordinates (i,zs,s,...,zq), Where z; is the
jth coordinate of the entries in V' (j € [2,d]; recall that the
jth coordinates of these entries are identical). After that, we
organize all wavelet coefficients into a new d-dimensional
matrix C according to their coordinates.

In the second step, we treat C; as the input data, and we
apply a one-dimensional wavelet transform along the
second dimension of C; to produce a matrix C5, in a
manner similar to the transformation from M to Ci. In
general, the matrix C; generated in the ith step will be used
as the input to the (i + 1)th step. In turn, the (i 4 1)th step
will apply a one-dimensional wavelet transform along the
(7 + 1)th dimension of C;, and it will generate a new matrix
Cit1. We refer to C; as the step-i matrix. After all
d dimensions are processed, we stop and return Cy as the
result. We refer to the transformation from M to C,; as an
Haar-nominal (HN) wavelet transform. Observe that C,; can
be easily converted back to the original matrix M, by
applying inverse wavelet transforms along dimensions
d,d—1,...,11in turn.

Example 4. Fig. 4 illustrates an HN wavelet transform on a
matrix M with two ordinal dimensions. In the first step
of the transform, M is vertically divided into two vectors
(v11,v12) and (var,v). These two vectors are then
converted into two new vectors (v);,v},) and (v, vh,)
using the one-dimensional HWT. Note that v}, and v},
are the base coefficients. The new matrix C, is the step-1
matrix.

Next, C is horizontally partitioned into two vectors
(Vh;,vy,) and (v}, v)y). We apply the HWT on them and
generate two coefficient vectors (ci1,c2) and (ci9, c2),
with ¢ and ¢ being the base coefficients. The matrix Cs
is returned as the final result.

6.2 Instantiation of Privelet

Given a d-dimensional table 7" and a parameter \, Privelet
first performs the HN wavelet transform on the frequency
matrix M of T'. Then, it adds Laplace noise with magnitude
A/ Whn(c) to each coefficient ¢, where Wpy is a weight
function that we will define shortly. Next, it reconstructs a
noisy frequency matrix A* using the noisy wavelet
coefficients by inverting the one-dimensional wavelet
transforms on dimensions d,d —1,...,1 in turn.” Finally,
it terminates by returning M*.

2. If the ithe dimension is nominal, then, whenever we convert a vector
V" in the step-i matrix back to a vector V in the step-(i — 1) matrix, we will
apply the mean substraction procedure before the reconstruction of V.



XIAO ET AL.: DIFFERENTIAL PRIVACY VIA WAVELET TRANSFORMS

The weight function Wpyy is decided by the one-
dimensional wavelet transforms adopted in the HN wavelet
transform. Let W; be the weight function associated with
the transform used to compute the step-i (i € [1, d]) matrix,
ie., W; = Whpyaae if the ith dimension of M is ordinal,
otherwise W, = Wyoy,. We determine the weight Wy (c)
for each HN wavelet coefficient ¢ as follows: First, during
the construction of the step-1 matrix C;, whenever we
generate a coefficient vector V', we assign to each ¢ € V' a
weight W (¢/). For instance, if the first dimension A; of M is
nominal, then Wi(¢) =1 if ¢ is the base coefficient,
otherwise Wi (c') = f/(2f —2), where f is the fan-out of
the parent of ¢ in the decomposition tree. Due to the way
we arrange the coefficients in C}, if two coefficients in C;
have the same coordinates on the first dimension, they must
have identical weights.

Now consider the second step of the HN wavelet
transform. In this step, we first partition C) into vectors
along the second dimension, and then we apply one-
dimensional wavelet transforms to convert each vector V"
to into a new coefficient vector V*. Observe that all
coefficients in V" should have the same weight, since they
have identical coordinates on the first dimension. We set the
weight of each ¢* € V* to be Wy (c*) times the weight shared
by the coefficients in V”.

In general, in the ith step of the HN wavelet transform,
whenever we generate a coefficient ¢ from a vector
V c Ci_1, we always set the weight of ¢ to the product of
W;(c) and the weight shared by the coefficients in V—all
coefficients in V' are guaranteed to have the same weight,
because of the way we arrange the entries in C;_;. The
weight function Wyy for the HN wavelet transform is
defined as a function that maps each coefficient in Cj to its
weight computed as above. For convenience, for each
coefficient ¢ € C; (i € [1,d—1]), we also use Wgn(c) to
denote the weight of ¢ in C;.

Example 5. Consider the HN wavelet transform in Fig. 4.
Both dimensions of the frequency matrix M are nominal,
and hence, the weight function for both dimensions is
WhHaer- In the step-1 matrix C), the weights of the
coefficients v}, and v}, equal 1/2, because 1) they are the
base coefficients in the wavelet transforms on (v1,v12)
and (vay, v21), respectively, and 2) Wy, assigns a weight
1/2 to the base coefficient whenever the input vector
contains only two entries.

Now consider the coefficient ¢;; in the step-2 matrix
(). It is generated from the HWT on (v}, v},), where
both v}, and v}, have a weight 1/2. In addition, as ¢ is
the base coefficient, Wer(c11) = 1/2. Consequently,
Wan(cir) =1/2 - Wigar(c11) = 1/4.

6.3 Theoretical Analysis

As Privelet with the HN wavelet transform is essentially a
composition of the solutions in Sections 4.2 and 5.2, we can
prove its privacy (utility) guarantee by incorporating
Lemmas 2 and 4 (3 and 5) with an induction argument on
the data set dimensionality d. Let us define a function P that
takes as input any attribute A, such that

1207

P(A) — {}L+10g2 |A|,

where h is the height of A’s hierarchy. Similarly, let H be a
function such that

if A is ordinal,
otherwise,

if A is ordinal,
otherwise.

We have the following theorems that show 1) the general-
ized sensitivity of the HN wavelet transform (Theorem 2)
and 2) the noise variance bound provided by Privelet with
the HN wavelet transform (Theorem 3).

Theorem 2. The HN wavelet transform on a d-dimensional
matrix M has a generalized sensitivity [[L, P(A;) with
respect to Wy, where A; is the ith dimension of M.

Theorem 3. Let Cj be a d-dimensional HN wavelet coefficient
matrix, such that each coefficient ¢* € C; has a noise variance
at most (o/Win(¢*))*. Let M* be the noisy frequency matrix
reconstructed from C%, and A; (i € [1,d]) be the ith dimension
of M*. For any range-count query answered using M*, the
noise in the query result has a wvariance at most

o? T, H(A).

By Theorem 2, Privelet with the HN wavelet transform
achieves e-differential when e¢=2/\- Hle P(4;); in that
case, by Theorem 3, Privelet ensures that any range-count
query result has a noise variance at most

d 2 d
2 (2/6 : HP(A,;)) JTH(A) = 0(10g?V m/e),
i=1 i=1

since P(A4;) and H(A;) are both logarithmic in m.

Privelet with the HN wavelet transform has an O(n + m)
time complexity. This is because 1) computing the fre-
quency matrix M takes O(n+m) time, 2) each one-
dimensional wavelet transform on A has O(m) complexity,
and 3) adding Laplace noise to the wavelet coefficients
incurs O(m) overhead.

6.4 A Hybrid Solution

We have shown that Privelet outperforms Dwork et al.’s
method asymptotically in terms of the accuracy of range-
count queries. In practice, however, Privelet can be inferior
to Dwork et al.’s method, when the input table 7" contains
attributes with small domains. For instance, if 7" has a single
ordinal attribute A with domain size |A| = 16, then Privelet
provides a noise variance bound of

2. (2-P(A)/e)” - H(A) = 600/,

as analyzed in Section 6.3. In contrast, Dwork et al.’s
method incurs a noise variance of at most

2. (2-]A|/e)* = 128/¢,

as shown in Section 2.2. This demonstrates the fact that,
Dwork et al.’s method is more favorable for small-domain
attributes, while Privelet is more suitable for attributes
whose domains are large. How can we combine the
advantages of both solutions to handle data sets that
contain both large- and small-domain attributes?



1208

Algorithm Privelet™ (T, )\, Sa)

1. map T to its frequency matrix M

2. divide M into sub-matrices along the dimensions
specified in Sa

3. for each sub-matrix

4. compute the HN wavelet coefficients of the
sub-matrix

5. add to each coefficient ¢ Laplace noise with
magnitude A\/Wnun(c)

6. convert the noisy coefficients back to a noisy
sub-matrix

7. assemble the noisy sub-matrices into a frequency

matrix M*

8. return M*

Fig. 5. The Privelet™ algorithm.

We answer the above question with the Privelett
algorithm illustrated in Fig. 5. The algorithm takes as an
input a table 7, a parameter )\, and a subset S, of the
attributes in 7. It first maps T to its frequency matrix M.
Then, it divides M into submatrices, such that each submatrix
contains the entries in M that have the same coordinates on
each dimension specified in S4. For instance, given the
frequency matrix in Table 2, if S, contains only the “Has
Diabetes?” dimension, then the matrix would be split into
two one-dimensional submatrices, each of which contains a
column in Table 2. In general, if M has d dimensions, then
each submatrix should have d — |S4| dimensions.

After that, each submatrix is converted into wavelet
coefficients using a (d — |S4|)-dimensional HN wavelet
transform. Privelet™ injects into each coefficient ¢ some
Laplace noise with magnitude \/Wpgy(c), and then it maps
the noisy coefficients back to a noisy submatrix. In other
words, Privelet™ processes each submatrix in the same way
as Privelet handles a (d —|S4|)-dimensional frequency
matrix. Finally, Privelet puts together all noisy subma-
trices to obtain a d-dimensional noisy frequency matrix A*,
and then it terminates by returning M*.

Observe that Privelett captures Privelet as a special case
where S, =0. Compared to Privelet, it provides the
flexibility of not applying wavelet transforms on the
attributes in S4. Intuitively, this enables us to achieve better
data utility by putting in S4 the attributes with small
domains, since those attributes cannot be handled well with
Privelet. Our intuition is formalized in Corollary 1, which
follows from Theorems 2 and 3.

Corollary 1. Let T' be a table that contains a set S of attributes.
Given T, a subset Sy of S, and a parameter )\, Privelet”
achieves e-differential privacy with € = 2/\ - [[4c5_s, P(A).
In addition, it ensures that any range-count query result has a
noise variance at most ([]scs, |Al) - [Tacs_s, H(A).

By Corollary 1, when e-differential privacy is enforced,
Privelett leads to a noise variance bound of

8/ ( II |A|> - I (pa)® - na). (7)

AeSy AeS—5,

It is not hard to verify that, when S4 contains only attributes
A with |A| < (P(A))?-H(A), the bound given in (7) is
always no worse than the noise variance bounds provided
by Privelet and Dwork et al.’s method.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

1 16 32 48 64
Fig. 6. A one-dimensional vector with 64 elements.

Finally, we note that Privelet’ also runs in O(n + m)
time. This follows from the O(n 4 m) time complexity of
Privelet.

7 PRIVELET WITH HEURISTIC NOISE REDUCTION

This section presents a technique that heuristically reduces
the amount of noise in the data produced by Privelet.
Section 7.1 clarifies the rationale of the technique, and
Section 7.2 elaborates the details.

7.1 Rationale

In the frequency matrix of a data set, adjacent entries often
have similar values due to the following two reasons. First,
the sparseness of real data may lead to large blocks of zero
entries in the frequency matrix. Second, the correlations
among the attributes in the data may also result in adjacent
entries (in the frequency matrix) that are close to each other.
For example, given a two-dimensional data set that stores the
age and disease information of a large set of patients, adjacent
entries along the disease dimension of the frequency matrix
might not differ much, since people with similar ages are
often equally susceptible to the same disease.

For a frequency matrix where adjacent entries are
similar, most of the wavelet coefficients of the matrix
would be small. For instance, Fig. 6 shows a one-dimen-
sional vector with 64 elements, and Fig. 7 illustrates the

0.6 0.6 — 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0 0 0 F/\v\/
-0.2 -0.2 -0.2 -0.2
-0.4 -0.4 -0.4 -0.4
-0.6 o -0.6 -0.6 -0.6
-0.8 -0.8 -0.8 -0.8
-1 = -1 -1 -1
1 12 1 4 1 4 8
(@) (b) (©) (d
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8
-1 -1
1 4 8 12 16 1 8 16 24 32

@) ()

Fig. 7. The Haar wavelet coefficients of the vector in Fig. 6. (a) Level 1.
(b) Level 2. (c) Level 3. (d) Level 4. (e) Level 5. (f) Level 6.



XIAO ET AL.: DIFFERENTIAL PRIVACY VIA WAVELET TRANSFORMS

Haar wavelet coefficients generated from each level of the
decomposition tree. Observe that most coefficients are close
or equal to zero. To understand this, recall that if a Haar
wavelet coefficient ¢ is generated from a node N in the
decomposition tree, then ¢ equals half of the difference
between the leaf-sums of the left and right subtrees of N.
When the leaves under N have similar values, the leaf-sums
of the two subtrees of N are roughly the same, in which case
¢ should be a small value. Due to similar reasons, if
frequency matrix contains a large number of adjacent
entries that are similar, most of its nominal or HN wavelet
coefficients would be insignificant.

Consider a frequency matrix M with a set C' of wavelet
coefficients that are mostly close to zero. Let C* be the noisy
version of C generated by Privelet™, i.e., each coefficient in
C* is injected with a small amount of Laplace noise.
Observe that, if a coefficient ¢ € C' is small, then, with a high
probability, its value after noise injection would also be
small. This indicates that the majority of the coefficients in
C* should be insignificant. Intuitively, if we set the
insignificant coefficients in C* to zero, C* would become
less noisy, since the original values of those coefficients are
close to zero anyway. Such a noise reduction approach is
referred to as wavelet thresholding [13], and it has been
extensively studied in the signal processing literature (see
the paper by Elad [14] and the references therein) for
recovering useful information from noisy data.

Two wavelet thresholding methods have been widely
adopted, namely, soft-thresholding and hard-thresholding.
Both methods are parameterized with a threshold 6 > 0.
Specifically, soft-thresholding transforms each noisy wave-
let coefficient ¢* using a function 7 as follows:

=0, ifc >0,
ns(c’,0) =< ¢ +0, if ¢ < -0, (8)
0, otherwise.

On the other hand, hard-thresholding modifies wavelet
coefficients with a function 7, as follows:

if |¢*] > 6,
otherwise.

mie.)={ )

To ensure that applying wavelet thresholding on C* does
not compromise the privacy guarantee of C*, the threshold ¢
should be decided based only on C*, i.e., § should not reveal
any more information than C* does. The signal processing
community has developed numerous methods (e.g., [13],
[14], [15], [16], [17]) for choosing an appropriate 6 based only
on the noisy wavelet coefficients. Those methods, however,
assume that 1) the noise-free wavelet coefficients follow a
distribution that is known in advance, or 2) the noise in each
coefficient follows a Gaussian distribution. This renders
those methods inapplicable for the problem studied in this
paper, since we assume that the exact distribution of the
wavelet coefficients is unknown, and the noise in each
coefficient follows a Laplace distribution. To address this
issue, in Section 7.2, we will propose a soft-thresholding
approach tailored for Privelett. We focus on soft-thresh-
olding instead of hard-thresholding, since the former is
generally more effective (in terms of noise reduction) than
the latter, as pointed out by Chang et al. [16].

1209

7.2 Algorithm

Our soft-thresholding approach is based on the concept of
subbands [7]. Two Haar or nominal coefficients are said to
belong to the same subband, if they are generated from the
same level of the decomposition tree (the base coefficient
itself is regarded as a separate subband). For example, the
Haar wavelet coefficients ¢y, ..., c; in Fig. 2 can be divided
into four subbands, i.e., {«}, {ca}, {c,c3}, and
{c4,¢5,¢5,¢7}. Similarly, we say that two d-dimensional
HN wavelet coefficients are from the same subband, if for
each i € [1, d], both coefficients correspond to the same level
of the decomposition tree for the ith dimension. For
instance, the four HN wavelet coefficients c;1, ¢, co1, cos in
Fig. 4 can be divided into four subbands, each of which
contains one coefficient. The reason is that, for the
horizontal dimension, ¢;; and ¢;2 (c21 and cy;) are generated
from the same level of the decomposition tree; on the other
hand, for the vertical dimension, ¢;; and ¢y (c12 and cg0) are
computed from the same decomposition tree level. In other
words, no two coefficients are from the same decomposition
tree level on both dimensions, and hence, each coefficient
constitutes a subband by itself.

Given a set of HN wavelet coefficients injected with
Laplace noise, we first divide them into subbands, and then
normalize each coefficient ¢* by multiplying ¢* with Wy (c*).
Since the noise in each ¢* has a magnitude \/Wpy(c"), each
normalized coefficient should have a fixed noise variance
2. A%, Therefore, in any subband, the variance of the noisy
normalized coefficients should equal 2 - A? plus the variances
of the noise-free normalized coefficients. Following existing
work [16], [18], we make the simplifying assumption that,
without the presence of noise, all normalized coefficients in
the same subband are independent samples from a certain
distribution with a zero mean. Under this assumption, givena
subband S of noisy normalized coefficients, the variance §* of
the noise-free normalized coefficients can be estimated as

Z(c")2 —2-)\%

ces

9 1

= (10)

Based on (10), we propose to apply soft-thresholding on
each noisy subband S, such that the variance of the modified
coefficients in S equals the estimated variance o? of the
noise-free coefficients. In other words, we aim to mitigate
the increase in the coefficient variance incurred by noise
injection. Accordingly, we set the threshold ¢ such that

ISI;—l' ¥ (m(c*,a))Z — ths. of (10).

cres

(11)

Let S, be the set of coefficients whose absolute values are
larger than 6. We have

Z (m(c*,@))2 = Z (C*)2 -2 Z 0

ces creSy creSy

(12)
+ 19| - 6°.

Based on (12), we propose the CompThresh algorithm in Fig. 8

for identifying a threshold 6 that satisfies (11). Given a

subband of (normalized) noisy coefficients and the noise
magnitude \, CompThresh first estimates the variance 6> of the



1210

Algorithm CompThresh (S, \)

1. U2:\S|;—IZC*ES(C*)2_2'>‘2

2. sort the noisy coefficients in S in descending order
3. store the sorted sequence in an array X

4. forany i€ [1,[S]], let as =370, (x[i))* and

Bi = 35 X1
5. perform a linear scan on X to compute «; and f; for
all i € [1, S]]
6. fori=|S|to1l
7. compute the 0 that satisfies the following equation
a; —2Bi-0+i-0*=(S]—1)-0°
8. ifi=|S|and 0 <0 < X]|S|], ori < |S| and

X[ <0< X[i+1]
9. return 6
10. return 0 = X[1]

Fig. 8. The CompThresh algorithm.

noise-free coefficients based on (10) (Line 1 of Fig. 8). After
that, CompThresh sorts all coefficients in descending order,
and stores the sorted sequence in an array X (Lines 2-3). Next,
CompThresh performs a linear scan on X, and computes the
following two values for eachi € [1,[S[]: 1) oy = Z‘lzl(X[z])Z,
and 2) f; =37, X[i] (Lines 4-5). By (12), a threshold ¢
satisfies (11), if and only if the following equation holds for
i = min{j | X[j] > 0}:

=26 -0+i-6*= (S| —1)-o% (13)

Given X, «;, and f; (i € [1,|S]]), CompThresh computes and
returns the desired threshold 6 based on (13) (Lines 6-10).
In summary, our soft-thresholding approach employs a
threshold computed based only on the noisy wavelet
coefficients (produced by Privelet’) and the noise magni-
tude A (which is assumed to be publicly known). This ensures
that the approach achieves the same privacy guarantee as
Privelett does. In terms of utility, however, the soft-thresh-
olding approach does not retain the noise variance bound
provided by Privelet”, due to the heuristic nature of the
approach. Specifically, the effectiveness of the approach
relies on the assumption that most of the wavelet coefficients
are small before noise injection. Nonetheless, our approach
tends to work well for practical data sets, as will be
demonstrated in Section 8. Finally, it can be verified that
the soft-thresholding approach runs in O(n + mlogm) time.

Remarks. The purpose of wavelet thresholding, as dis-
cussed in Section 7.1, is to prevent the small wavelet
coefficients from being dominated by noise. One may
wonder whether the same purpose can be fulfilled by
using a noise injection algorithm that adds noise only to
the large wavelet coefficients, while keeping the small
coefficients intact. Such an algorithm, however, violates
differential privacy, since the small coefficients output by
the algorithm can be highly sensitive to some particular
tuple in the data set. To address this issue, one possible
solution is to introduce some randomness into the
selection of wavelet coefficients that will be left un-
touched. Interested readers are referred to previous work
[19], [20], [21] for data publishing algorithms based on
similar ideas. The complete treatment of this alternative
solution is beyond the scope of this paper.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

TABLE 3
Sizes of Attribute Domains
Age | Gender | Occupation | Income
Brazil | 101 2(2) 512 (3) 1001
UsS 96 2 (2) 511 (3) 1020

8 EXPERIMENTS

This section experimentally evaluates three methods:
1) Dwork et al.’s method (referred to as Basic), 2) Privelet™,
and 3) our soft-thresholding approach discussed in Section 7
(referred to as Privelet”). Section 8.1 compares their data
utility, while Section 8.2 investigates their computational
cost.

8.1 Accuracy of Range-Count Queries

We use two data sets® that contain census records of
individuals from Brazil and the US, respectively. The Brazil
data sethas 10 million tuples and four attributes, namely, Age,
Gender, Occupation, and Income. The attributes Age and Income
are ordinal, while Gender and Occupation are nominal. The US
data set also contains these four attributes (but with slightly
different domains), and it has 8 million tuples. Table 3 shows
the domain sizes of the attributes in the data sets. The
numbers enclosed in parentheses indicate the heights of the
hierarchies associated with the nominal attributes.

For each data set, we create a set of 40,000 random range-
count queries, such that the number of predicates in each
query is uniformly distributed in [1,4]. Each query pre-
dicate “A; € S;” is generated as follows: First, we choose A4;
randomly from the attributes in the data set. After that, if A;
is ordinal, then S, is set to a random interval defined on A;;
otherwise, we randomly select a nonroot node from the
hierarchy of A4;, and let S; contain all leaves in the subtree of
the node. We define the selectivity of a query q as the fraction
of tuples in the data set that satisfy all predicates in ¢. We
also define the coverage of ¢ as the fraction of entries in the
frequency matrix that are covered by q.

We apply Basic, Privelett, and Privelet* on each data set
to produce noisy frequency matrices that ensure e-differ-
ential privacy, varying e from 0.5 to 1.25. For Privelet™ and
Privelet*, we set their input parameter Sy = {Age, Gender},
since each A of these two attributes has a relatively small
domain, i.e., |A| < (P(A))*-H(A), where P and H are as
defined in Section 6.3. We use the noisy frequency matrices
to derive approximate answers for range-count queries. The
quality of each approximate answer z is gauged by its
absolute error and relative error with respect to the actual
query result act. Specifically, the absolute error of x is
defined as |z — act|, and the relative error of z is computed
as |x — act|/max{act,s}, where s is a sanity bound that
mitigates the effects of the queries with excessively small
selectivities (we follow with this evaluation methodology
from previous work [23], [24]). We set s to 0.1 percent of the
number of tuples in the data set.

In our first set of experiments, we divide the query set
Q@ for the Brazil data set into five subsets. All queries in

3. Both data sets are publicly available as part of the Integrated Public Use
Microdata Series [22].



XIAO ET AL.: DIFFERENTIAL PRIVACY VIA WAVELET TRANSFORMS

1211

average absolute error

10° average absolute error 10° average absolute error
. -~ Basic . O Basic .
4 | 7B Privelet 4 [EF Privelet O
10 Privelet”f,_,.«@ 10 &

Privelet* .

10° average absolute error 10°
s @ - Basic N 8 @ - Basic .
""" - Privelet O —E Privelet
il 04 Privelet* ’ il 04 Privelet* O

10 10 10 10
10* 10° 10?2 10" 10° 10* 10° 102 10" 10° 10* 10° 102 10" 10° 10* 10° 102 10" 10°
coverage coverage coverage coverage
(@) (b) (©) ()
Fig. 9. Average absolute error versus query coverage (Brazil). (a) e = 0.5. (b) e = 0.75. (¢) e = 1. (d) e = 1.25.
105 @verage absolute error 105 average absolute error 105 @verage absolute error 105 @verage absolute error
Basic 0 O Basic 0 @ Basic . @ Basic .
4 | B Privelet o 4 [TEF Privelet 1) 4 |TE Privelet o 4 |TE Privelet o
10" (—&— Privelet* .- 10" (—A&— Privelet* O 10 Privelet* @ 10 Privelet*
10° 10° 10°
2 2 2
10 10 10 10
10% 10% 102 107 10° 10 10° 102 10" 10° 10* 10° 102 10" 10° 10* 10° 102 10" 10°
coverage coverage coverage coverage
(@) (b) (©) (d)

Fig. 10. Average absolute error versus query coverage (US). (a) e = 0.5. (b) e = 0.75. (c) e = 1. (d) e = 1.25.

average relative error

average relative error

0.8 - 0.8
07 &> Basl:é) 0.7 [~C Bas"@”.wo'"
0.6 t—=— Privelet” 0.6 t~E- Privelet’
0.5 —A— Privelet* 0.5 Priyeler*
0.4 0.4
03 0.3
0.2 0.2
0.1 0.1

0 0

108 10 10% 102 1

0 10% 10° 10* 107 1 0
selectivity selectivity
(@) (b)

Fig. 11. Average relative error versus query selectivity (Brazil). (a) e = 0.5

the ith (i € [1,5]) subset have coverage that falls between the
(2 — 1)th and ith quintiles of the query coverage distribution
in @p,. On each noisy frequency matrix generated from the
Brazil data set, we process the five query subsets in turn,
and plot in Fig. 9 the average absolute error in each subset
as a function of the average query coverage. Fig. 10 shows
the results of a similar set of experiments conducted on the
US data set.

The average absolute error of Basic increases linearly
with the query coverage. In contrast, the average absolute
error of Privelet* is insensitive to the query coverage. The
highest average error incurred by Privelet” is smaller than
that of Basic by two orders of magnitudes. This is consistent
with our analysis that Privelet™ provides a much better
noise variance bound than Basic does.

On the other hand, the error of Privelet* is comparable
to (considerably smaller than) that of Privelet™ when the
query coverage is larger (smaller) than 0.01. This is
because a query with a small coverage often has a small
result, in which case the wavelet coefficients that corre-
spond to the query tend to be small. As explained in
Section 7, Privelet* adopts a wavelet thresholding ap-
proach that makes the small wavelet coefficients less noisy,
and therefore, it leads to more accurate results for queries
with small coverage. Meanwhile, a query with a large

average relative error average relative error

0.8 0.8
0.7 O~ Basic 0.7 O~ Basic
0.6 |~ Privelet” 0.6 |~ Privelet”
0.5 [—&— Privelet* o 0.5 t—&— Privelet*
0.4 Q— ‘._‘ 0.4
03 O
0.2 , L
0.1 4
0
0 10% 10° 10* 102 1
selectivity selectivity
(© (d)

. (b) e=0.75. (c) e = 1. (d) e = 1.25.

coverage usually corresponds to large wavelet coefficients,
for which wavelet thresholding is less effective. This
explains why the error of Privelet* and Privelet™ are
similar when the query coverage is large.

In the next experiments, we divide the query set for
each data set into five subsets based on query selectiv-
ities. Specifically, the ith (i € [1,5]) subset contains the
queries whose selectivities are between the (i — 1)th and
ith quintiles of the overall query selectivity distribution.
Figs. 11 and 12 illustrate the average relative error
incurred by each noisy frequency matrix in answering
each query subset. The X-axes of the figures represent the
average selectivity of each subset of queries. The error of
Privelet* is lower than (comparable to) that of Privelet”
when the query selectivity is smaller (larger) than 0.001,
since Privelet* is more effective for small queries, as we
have explained for the results in Figs. 11 and 12. In
addition, the error of Privelett and Privelet* is no more
than 25 percent in all cases, while Basic induces more
than 70 percent error in several query subsets.

In summary, our experiments show that Privelet*
outperforms Privelet” in terms of the accuracy of range-
count queries. In turn, Privelet™ incurs a smaller query
error than Basic does, whenever the query coverage is larger
than 1 percent or the query selectivity is at least 1077.



1212

average relative error average relative error

0.7 0.7
06 O Basic}_@_» 0.6 O Basic
0.5 | & Privelet * 0.5 | & Pri velet”
—A— Privelet*". —A— Privelet*
0.4 0.4 4
) 0.3 5
4 4 - B 4 2 V
10% 10 10* 107 1 108 10 10* 107 1
selectivity selectivity

(a) (b)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

average relative error average relative error

0.7 0.7

0.6 -~ Basic 0.6 -~ Basic
05 & Privelet” 0.5 B Privelet’
—A— Privelet*

—A— Privelet*

0.4 0.4
03
0.2
0.1 Ry
0 & ) 0e By
10% 10° 10% 102 1 10% 10° 10% 102 1
selectivity selectivity

(©) (d)

Fig. 12. Average relative error versus query selectivity (US). (a) e = 0.5. (b) e = 0.75. (c) e = 1. (d) e = 1.25.

8.2 Computation Time

Next, we investigate how the computation time of Basic,
Privelett, and Privelet* varies with the number n tuples in
the input data and the number m of entries in the frequency
matrix. For this purpose, we generate synthetic data sets
with various values of n and m. Each data set contains two
ordinal attributes and two nominal attributes. The domain
size of each attribute is m'/%. Each nominal attribute A has a
hierarchy H with three levels, such that the number of level-
2 nodes in H is y/|A|. The values of the tuples are uniformly
distributed in the attribute domains.

In the first set of experiments, we fix m = 2*!, and apply
Basic, Privelet®, Privelet* on data sets with n ranging from
1 to 5 millions. For Privelett and Privelet*, we set their
input parameter S, = ), in which case both methods have a
relatively large running time, since they need to perform
wavelet transforms on all dimensions of the frequency
matrix. Fig. 13 illustrates the computation time of Basic,
Privelett, and Privelet* as a function of n. Observe that all
three techniques run linear time with respect to n.

In the second set of experiments, we set n = 5 x 10%, and
vary m from 2* to 2%. Fig. 14 shows the computation
overhead of Basic, Privelet™, and Privelet* as a function of
m. All techniques scale almost linearly with m.

In summary, Privelet* incurs a higher computation
overhead than Privelett does, and they are both less
efficient than Basic. Nevertheless, this is justified by the facts
that, in term of data utility, Privelet* outperforms Privelet™,
which in turn is superior to Basic.

9 RELATED WORK

Numerous techniques have been proposed for ensuring e-
differential privacy in data publishing [6], [19], [20], [21], [25],
[26], [27], [28], [29]. The majority of these techniques,
however, are not designed for the publication of general

computation time (sec)

120 6 B

i O Basic

0 B Privelet”
Privelet*

n (millions)

Fig. 13. Time versus n.

relational tables. In particular, the solutions by Korolova et al.
[20] and Gotz et al. [21] are developed for releasing query and
click histograms from search logs. Chaudhuri and Monte-
leoni [25] and Kasiviswanathan et al. [27] investigate how the
results of various machine learning algorithms can be
published. Nissum et al. [28] propose techniques for
releasing 1) the median value of a set of real numbers, and
2) the centers of the clusters output from the k-means
clustering algorithm. Machanavajjhala et al. [19] study the
publication of commuting patterns, i.e., tables with a scheme
(ID, Origin, Destination) where each tuple captures the
residence and working locations of an individual.

The work closest to ours is by Dwork et al. [6], Barak et al.
[29], Hay et al. [30], Blum et al. [26], Li et al. [31], and Ghosh
et al. [32]. Dwork et al.’s method, as discussed previously, is
outperformed by our Privelet technique in terms of the
accuracy of range-count queries. On the other hand, Barak
et al.’s technique is designed for releasing marginals, i.e., the
projections of a frequency matrix on various subsets of the
dimensions. Given a set of marginals, Barak et al.’s
technique first transforms them into the Fourier domain,
then adds noise to the Fourier coefficients. After that, it
refines the noisy coefficients and maps them back to a set of
noisy marginals. Although this technique and Privelet have a
similar framework, their optimization goals are drastically
different. Specifically, Barak et al.’s technique does not
provide utility guarantees for range-count queries; instead,
it ensures that 1) every entry in the noisy marginals is a
nonnegative integer, and 2) all marginals are mutually
consistent, e.g., the sum of all entries in a marginal always
equals that of another marginal.

In addition, Barak et al’s technique requires solving a
linear program where the number of variables equals the
number m of entries in the frequency matrix. This can be
computationally challenging for practical data sets with a
large m. For instance, for the two census data sets used in our

computation time (sec)

Basic N
----- =+ Privelet

150 —6— Privelet® Al
100 =
50 BT
0
222 224 225 226
m

Fig. 14. Time versus m.



XIAO ET AL.: DIFFERENTIAL PRIVACY VIA WAVELET TRANSFORMS

experiments, we have m > 108. In contrast, Privelet runs in
time linear to m and the number n of tuples in the input table.

Independent of our work, Hay et al. [30] propose an
approach for achieving e-differential privacy while ensuring
polylogorithmic noise variance in range-count query an-
swers. Given a one-dimensional frequency matrix M, Hay
et al.’s approach first computes the results of a set of range-
count queries on M, and then it adds Laplace noise to the
results. After that, it derives a noisy frequency matrix M*
based on the noisy query answers, during which it carefully
exploits the correlations among the answers to reduce the
amount of noise in A/*. Although Hay et al.’s approach and
Privelet provide the same asymptotic guarantee in terms of
data utility [31], the former is designed exclusively for one-
dimensional data sets, whereas the latter is applicable on
data sets with arbitrary dimensionalities.

Blum et al. [26] also develop a technique for accurately
answering range-count query in a differentially private
manner. As pointed out by Hay et al. [30], however, Blum
etal.’s technique is outperformed by Hay et al.’s approach in
terms of data utility; in contrast, Privelet and Hay et al.’s
approach achieve the same utility guarantees [31]. More
recently, Li et al. [31] propose the matrix mechanism, a
technique that not only generalizes both Privelet™ and Hay
et al’s approach but also provides higher data utility.
Nevertheless, the computation overhead of the matrix
mechanism is rather significant, which makes it impractical
for data sets with large cardinalities. Ghosh et al. [32] devise a
differentially private method that provides the optimal
answer (in terms of utility) for a single count query.
Nevertheless, it is unclear how the method can be extended
for the case when multiple queries may be issued by the user.

There also exists a large body of literature (e.g., [8], [23],
[24]) on the application of wavelet transforms in data
management. The focus of this line of research, however, is
not on privacy preservation. Instead, existing work mainly
investigates how wavelet transforms can be used to
construct space- and time-efficient representations of multi-
dimensional data, so as to facilitate query optimization [23],
or approximate query processing [8], [24], just to name two
applications.

A preliminary version [33] of the current paper was
published in ICDE 2010. The new contribution of current
paper includes the Privelet* technique (in Section 7) and an
experimental evaluation of its performance (in Section 8). In
addition, the current paper features an Appendix, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2010.247, that
contains all proofs omitted in the preliminary version.

10 CONCLUSIONS

We have presented Privelet, a data publishing technique that
utilizes wavelet transforms to ensure e-differential privacy.
Compared to the existing solutions, Privelet provides
significantly improved theoretical guarantees on the accu-
racy of range-count queries. Our experimental evaluation
demonstrates the effectiveness and efficiency of Privelet.
For future work, we plan to extend Privelet for the case
where the distribution of range-count queries is known in
advance. Furthermore, currently Privelet only provides
bounds on the noise variance in the query results; we want
to investigate what guarantees Privelet may offer for other

1213

utility metrics, such as the expected relative error of the
query answers.

ACKNOWLEDGMENTS

This material is based upon work supported by the
Nanyang Technological University under SUG Grant
M58020016 and AcRF Tier-1 Grant RG 35/09, by the New
York State Foundation for Science, Technology, and Innova-
tion under Agreement C050061, by the National Science
Foundation under Grant 0627680, by the iAd Project funded
by the Research Council of Norway, and by a gift from
Microsoft Corporation. Any opinions, findings, conclusions,
or recommendations expressed are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] N.R. Adam and J.C. Worthmann, “Security-Control Methods for
Statistical Databases: A Comparative Study,” ACM Computing
Surveys, vol. 21, no. 4, pp. 515-556, 1989.

[2] B.C.M. Fung, K. Wang, R. Chen, and P.S. Yu, “Privacy-Preserving
Data Publishing: A Survey of Recent Developments,” ACM
Computing Surveys, vol. 42, no. 4, pp. 14:1-53, 2010.

[3] R.C.-W. Wong, AW.-C. Fu, K. Wang, and J. Pei, “Minimality
Attack in Privacy Preserving Data Publishing,” Proc. Int'l Conf.
Very Large Data Bases (VLDB), pp. 543-554, 2007.

[4] S.RR. Ganta, S.P. Kasiviswanathan, and A. Smith, “Composition
Attacks and Auxiliary Information in Data Privacy,” Proc. 14th
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(KDD), pp. 265-273, 2008.

[5] D. Kifer, “Attacks on Privacy and de Finetti’s Theorem,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 127-138, 2009.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
Noise to Sensitivity in Private Data Analysis,” Proc. Third Theory of
Cryptography Conf. (TCC), pp. 265-284, 2006.

[7] E.J. Stollnitz, T.D. Derose, and D.H. Salesin, Wavelets for Computer
Graphics: Theory and Applications. Morgan Kaufmann Publishers,
1996.

[8] K. Chakrabarti, M.N. Garofalakis, R. Rastogi, and K. Shim,
“Approximate Query Processing Using Wavelets,” The VLDB J.,
vol. 10, nos. 2/3, pp- 199-223, 2001.

[9] M.N. Garofalakis and P.B. Gibbons, “Wavelet Synopses with Error
Guarantees,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 476-487, 2002.

[10] V. Iyengar, “Transforming Data to Satisfy Privacy Constraints,”
Proc. Eighth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 279-288, 2002.

[11] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “Fast Data
Anonymization with Low Information Loss,” Proc. Int’l Conf. Very
Large Data Bases (VLDB), pp. 758-769, 2007.

[12] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Total,” Proc. 12th IEEE Int’l Conf. Data Eng. (ICDE),
pp- 152-159, 1996.

[13] D. Donoho and I. Johnstone, “Ideal Spatial Adaptation via
Wavelet Shrinkage,” Biometrika, vol. 81, pp. 425-455, 1994.

[14] M. Elad, “Why Simple Shrinkage is Still Relevant for Redundant
Representations?” IEEE Trans. Information Theory, vol. 52, no. 12,
pp- 5559-5569, Dec. 2006.

[15] A.Chambolle, R.A. DeVore, N.-Y. Lee, and B.J. Lucier, “Nonlinear
Wavelet Image Processing: Variational Problems, Compression,
and Noise Removal through Wavelet Shrinkage,” IEEE Trans.
Image Processing, vol. 7, no. 3, pp. 319-335, Mar. 1998.

[16] S.G. Chang, B. Yu, and M. Vetterli, “Adaptive Wavelet Thresh-
olding for Image Denoising and Compression,” IEEE Trans. Image
Processing, vol. 9, no. 9, pp. 1532-1546, Sept. 2000.

[17] D. Donoho and I. Johnstone, “Adapting to Unknown Smoothness
via Wavelet Shrinkage,” |. Am. Statistical Assoc., vol. 90, pp. 1200-
1224, 1995.

[18] S.G. Chang, B. Yu, and M. Vetterli, “Spatially Adaptive Wavelet
Thresholding with Context Modeling for Image Denoising,” IEEE
Trans. Image Processing, vol. 9, no. 9, pp. 1522-1531, Sept. 2000.



1214

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 8, AUGUST 2011

A. Machanavajjhala, D. Kifer, ] M. Abowd, ]J. Gehrke, and L.
Vilhuber, “Privacy: Theory Meets Practice on the Map,” Proc. 24th
IEEE Int’l Conf. Data Eng. (ICDE), pp. 277-286, 2008.

A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas,
“Releasing Search Queries and Clicks Privately,” Proc. Int’l Conf.
World Wide Web (WWW), pp. 171-180, 2009.

M. Gotz, A. Machanavajjhala, G. Wang, X. Xiao, and ]J.
Gehrke, “Publishing Search Logs - A Comparative Study of
Privacy Guarantees,” to be published in IEEE Trans. Knowledge
and Data Eng.

Minnesota Population Center, “Integrated Public Use Microdata
Series—International: Version 5.0,” https://international.ipums.
org, 2009.

J.S. Vitter and M. Wang, “Approximate Computation of Multi-
dimensional Aggregates of Sparse Data Using Wavelets,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 193-204, 1999.
M.N. Garofalakis and A. Kumar, “Wavelet Synopses for General
Error Metrics,” ACM Trans. Database Systems, vol. 30, no. 4,
pp. 888-928, 2005.

K. Chaudhuri and C. Monteleoni, “Privacy-Preserving Logistic
Regression,” Proc. 22nd Ann. Conf. Neural Information Processing
Systems (NIPS), pp. 289-296, 2008.

A. Blum, K. Ligett, and A. Roth, “A Learning Theory Approach to
Non-Interactive Database Privacy,” Proc. 40th Ann. ACM Symp.
Theory of Computing (STOC), pp. 609-618, 2008.

S.P. Kasiviswanathan, H.K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, “What Can We Learn Privately?” Proc. 49th Ann. IEEE
Symp. Foundations of Computer Science (FOCS), pp. 531-540, 2008.
K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth Sensitivity
and Sampling in Private Data Analysis,” Proc. 39th Ann. ACM
Symp. Theory of Computing (STOC), pp. 75-84, 2007.

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K.
Talwar, “Privacy, Accuracy, and Consistency Too: A Holistic
Solution to Contingency Table Release,” Proc. 26th ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems (PODS),
pp. 273-282, 2007.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the
Accuracy of Differentially-Private Queries through Consistency,”
Proc. VLDB Endowment, vol. 3, no. 1, pp. 1021-1032, 2010.

C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor,
“Optimizing Linear Counting Queries under Differential Priv-
acy,” Proc. 29th ACM SIGMOD-SIGACT-SIGART Symp. Principles
of Database Systems (PODS), pp. 123-134, 2010.

A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally
Utility-Maximizing Privacy Mechanisms,” Proc. Ann. ACM Symp.
Theory of Computing (STOC), pp. 351-360, 2009.

X. Xiao, G. Wang, and J. Gehrke, “Differential Privacy via Wavelet
Transforms,” Proc. 26th IEEE Int’l Conf. Data Eng. (ICDE), pp. 225-
236, 2010.

Xiaokui Xiao received the PhD degree in
computer science from the Chinese University
of Hong Kong in 2008. He is currently a Nanyang
Assistant Professor at the Nanyang Technologi-
cal University (NTU), Singapore. Before joining
NTU in 2009, he was a postdoctoral associate at
the Cornell University. His research interests
include data privacy and spatial databases.

Guozhang Wang is a PhD student in the
Department of Computer Science at Cornell
University. His research interests are in the
areas of database systems, data privacy, and
cloud computing.

Johannes Gehrke is a professor in the Depart-
ment of Computer Science at Cornell University.
His research interests are in the areas of
database systems, data mining, and data
privacy.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



