
20-08-04 1

How can 4
(or 4000)

developers work

on a product
at once?

CMPT 276 © Dr. B. FraserSlides #2

Revision
Control

More Info: https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

20-08-04 2

Revision Control

● Revision Control:
–

– Also called version control, source control,

software configuration management.

● Motivation:
– Need to coordinate changes made by multiple

developers.
– Need a reliable system to ensure changes are

..

a system to manage changes to electronic
documents.

not lost or incompatible.

20-08-04 3

Git Basics

20-08-04 4

Local Computer

Local Topology Simplified

Local
Repository

Working
Directory

● Local Machine has a
..

● The latest code in the repo
can be checked-out into the
working directory.

– Head: the latest version of
the code.

● ..
Changes to files in the
working directory are
committed to the
local repo

Git Repository (Repo)

Commit

20-08-04 5

Local Computer

Remote Topology Simplified

Local
Repository

Working
Directory

● Remote Server has a Git Repo
– Server accessed by

multiple developers
– Local repo syncs up

with remote

Remote Server

Remote
Repository

20-08-04 6

Distributed

● Distributed Version Control
– Git has..

each “local repo” is a full and complete repo.
– Can work off-line (on a plane) and still commit to the

local repo. Later sync up with the remote repo.

● Git Servers
– Often the remote repo is a dedicated Git server such

as GitHub or GitLab.
– These systems add extra team collaboration

and discussion tools (more later).

no single centralized master repo:

20-08-04 7

Work Flow 1: Setup

● Associate your local repo to a remote repo by either:
– Create a repo in GitLab (gitlab.cs.sfu.ca) and push

some existing code to it; or
– .. an existing repo to your local PC.Clone

20-08-04 8

Work Flow 2: Changes
● Do some work in working directory

– create new files, change files, delete files, etc.

● ..
– Stages the changes as being ready to commit.
– Also used for adding files to Git (tracking them)

● ..
– Commit all staged changes to local repo.
– Sometimes termed “Check-in”

● ..
– Send committed changes to remote repo.

● ..
– View the state of local file changes

Add Command

Commit Command

Push Command

Status Command

20-08-04 9

Work Flow 3: Other’s Changes
● Other team members will push some changes to the

repo which you then want
– May be new / changed / deleted files

● ..
– Get changes from remote repo and apply them to

local repo and working directory (move to head).
– If there are any conflicting changes, may need to do

a merge (more later).
● ..

– At any time, can view the changes
people have made.

Pull Command

Log Command

20-08-04 10

Git Tools

● Command Line
– Git is very often accessed via its command-line tools
– Git commands look like:

git clone git@csil-git1.cs.surrey.sfu.ca:myTeam/daProject.git
git commit

● GUI Integrated Tools
– ..

but low-level understanding is required!
– Can be inside IDE: Android Studio
– Can be integrated into file system: TortoiseGit
– Lecture: command line to understand the tool;

Assignments: IDE for convenience (likely).

Abstract away some low-level details,

20-08-04 11

Command-line Demo

● Git Command Demo
[create repo on csil-git1.cs.surrey.sfu.ca]

– git clone <git@csil-git1.cs....>

[now edit file hello.txt]
– git status
– git add hello.txt
– git commit
– git push
– git log
– git pull

20-08-04 12

Git Details

20-08-04 13

Basic Git Sequence for Editing Code

0. Have a working directory with no changes

1. ..
– will "fast-forward" without any conflicting changes

2. ..
– cannot pull with some uncommitted changes

3. ..

4. ..
– automatically merges files without conflicting changes

– manually merge conflicts when required

5. ..
– cannot push if others have pushed code:

“Pull”

Do your work

“Add” & “Commit” changed files

“Pull”

“Push”

“current branch is behind master”, “unable to fast-forward”

20-08-04 14

Merge Conflict Demo

● Show demo of conflicting changes being made by
two team members at once

– Pulling with uncommitted conflicts fails
– Pushing before merging fails
– Commit my changes
– Pull to trigger merge
– When merge done then add/commit/push

● Android Studio has VCS --> Update Project
– Which works with uncommitted conflicts
– It automatically stash changes to get

around having to do extra commit

See
Directions

20-08-04 15

.gitignore

● .gitignore File
– Lists file types to exclude from Git:..

– Example:
Exclude .bak, build products, some IDE files

Ensures only the right kind of files are added

20-08-04 16

Commit Messages
● A good commit message is required!

– Line 1: .. (<70 characters)
Capitalize your statement
Use imperative: "Fix bug..." vs "fixed" or "fixes"

– Line 2: ..
– Line 3+: .. ; wrap your text ~70 characters

● 276 Pair Programming
– If pair programming, add pair’s user ID at start:

“[pair: bfraser] Make game state persist”

Make game state persist between launches and rotation.

Use SharedPreferences to store Game's state. Serialize
using Gson library and Bundle for rotation.

Short summary

Blank

Details

Example:

20-08-04 17

Reverting Changes

● ‘git checkout’ to revert files
– ..
– Overwrite file in working directory

with one from local repo.

● Revert with Caution
– Will lose all uncommitted changes in the file.
– Normally Git does not let you lose changes.
– If in doubt, grab a backup copy (ZIP your folder)

then revert.
● Just make sure you don’t

commit the backup!

Discards any uncommitted changes to a file.

20-08-04 18

Delete, Rename

● Delete file
– Delete file normally via the OS/IDE,

..
Git records it's now deleted.

– Will be deleted on everyone else's system when
they pull your changes.

● Rename file
– Rename file normally via the OS/IDE,

then "add" it to Git
– Git tracks files by their content,

not by their name.

then "add" it to Git.

20-08-04 19

Revision Control
Generalities

20-08-04 20

Merge vs Lock

2 Competing ways revision control protects files:
● Checkout-Edit-Merge

– Merge support allows concurrent access to a file so
multiple developers can work on same code at once

– But can lead to...

● Lock-Edit-Unlock
– Locking prevents merge conflicts by..

● "I can't make any changes until Bob finish!"
– Adds pressure to make changes quickly..

 "I need that file now!”

merge conflicts.

preventing others from changing the file

error prone.

Draw

20-08-04 21

Revision Control Features

● Atomic operations
–

– Change is applied all at once:
no other changes applied while you're checking in.

No part of a change occurs unless
the whole change does.

● Tag
– Mark certain versions of certain files as a group.

Ex: "Files for Version 1.0 of product".
– Able to easily..

of the files later to fix bugs etc.
● "Get all files exactly as the were in

Version 1.0 (three year ago)".

checkout these exact versions

20-08-04 22

Team Work

● Minimum requirement to committing code:

– When you check in, the full system must compile
and run.

– Only under exceptional circumstances should you
ever check in something which breaks the build.

Don't break the build!

20-08-04 23

Committing Frequency

● Expected Commit Frequency
– Commit little changes to local repo very often

..
– Once some work is more stable, push all the

changes at once to remote repo..

● CMPT 276
– Committing / pushing this frequently gives visibility

to your contributions; helps for marking discussions!
– In a ‘professional’ project, you would tailor your

 commits/pushes to the work you are doing,
and squash small commits together into bigger
more meaningful ones.

(~hourly)

(~daily)

20-08-04 24

Coding with Source Control

●
// Removed Jan 2002 for V1.01
// cout << "Dave; I wouldn't do that, Dave.\n";

– Put meaningful comments into checkins!

●
#if 0
// Unneeded, but left 'cuz someone may want it...
......
#endif

●
// Written by Dr. Evil
....

Don't write journals in comments in source code.

Don't leave dead code:

Don't sign your code:

20-08-04 25

Summary

● Revision control a critical tool for development.
– Git is a distributed revision control system.

● Operations:
– clone, add, commit, push, pull, merge (later)

● Git Details
– Merge conflicting changes as needed.
– .gitignore, revert (git’s checkout)

● Basic Features
– Atomic operations, tags/Label

● Rules to Code By
– Commit often, don’t break the build

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

