Problem 1

Define

$$J_1(\boldsymbol{w}) = |\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}|^2 + \lambda_2 |\boldsymbol{w}|^2 + \lambda_1 |\boldsymbol{w}|_1$$

and

$$J_2(\boldsymbol{w}) = |\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{X}}\boldsymbol{w}|^2 + c\lambda_1|\boldsymbol{w}|_1$$

where $c = (1 + \lambda_2)^{-\frac{1}{2}}$ and

$$\tilde{\boldsymbol{X}} = c \begin{pmatrix} \boldsymbol{X} \\ \sqrt{\lambda_2} \boldsymbol{I}_d \end{pmatrix}, \, \tilde{\boldsymbol{y}} = \begin{pmatrix} \boldsymbol{y} \\ \boldsymbol{0}_{d \times 1} \end{pmatrix}$$

Show

$$\arg \min J_1(\boldsymbol{w}) = c(\arg \min J_2(\boldsymbol{w}))$$

i.e. $J_1(c\mathbf{w}) = J_2(\mathbf{w})$ and hence that one can solve an elastic net problem using a lasso solver on modified data.

Problem 2

Consider the DAG G in the following figure. Assume it is a minimal I-map for p(A, B, C, D, E, F, X). Now consider marginalizing out X. That is, X is unobserved and we construct $p(A, B, C, D, E, F) = \sum_{X} p(A, B, C, D, E, F, X)$. Construct a new DAG G' which is a minimal I-map for p(A, B, C, D, E, F). Specify (and justify) which extra edges need to be added. Discuss which pairs of variables are conditionally independent in your new graph.

Problem 3

- 1. Convert the BN above to MRF.
- 2. Fill in the blanks to make a true statement: _____ and ____ are d-separated given ____ in the BN, but not d-separated in the MRF.

Problem 4

Consider a MRF of 4 random binary variables A, B, C, D, corresponding to 4 students in a CMPT 727 study group. Each variable represents whether the student has a correct understanding of the EM algorithm.

The potential function tables are defined as follows:

(var1, var2)	$\psi(A,B)$	$\psi(B,C)$	$\psi(C,D)$	$\psi(D,A)$
(0,0)	100	10	1	10
(0,1)	1	1	10	1
(1,0)	1	1	10	1
(1,1)	100	50	1	20

Assignment 7

This table is formed based on observation that A and B are good friends, so they are prone to the same understanding (either correct or incorrect); two other pairs (B,C) and (D,A) also tend to have same understanding but they are more likely be correct. C and D usually argue, and they are more likely to hold different opinions.

- 1. Calculate the partition function Z.
- 2. What is the probability that all students in this group have a correct understanding of the EM algorithm?

Problem 5

Please write one thing from this course you found confusing, a topic you would like to hear more about, or something you found particularly interesting.