Problem 1

Define

$$
J_{1}(\boldsymbol{w})=|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}|^{2}+\lambda_{2}|\boldsymbol{w}|^{2}+\lambda_{1}|\boldsymbol{w}|_{1}
$$

and

$$
J_{2}(\boldsymbol{w})=|\tilde{\boldsymbol{y}}-\tilde{\boldsymbol{X}} \boldsymbol{w}|^{2}+c \lambda_{1}|\boldsymbol{w}|_{1}
$$

where $c=\left(1+\lambda_{2}\right)^{-\frac{1}{2}}$ and

$$
\tilde{\boldsymbol{X}}=c\binom{\boldsymbol{X}}{\sqrt{\lambda_{2}} \boldsymbol{I}_{d}}, \tilde{\boldsymbol{y}}=\binom{\boldsymbol{y}}{\mathbf{0}_{d \times 1}}
$$

Show

$$
\arg \min J_{1}(\boldsymbol{w})=c\left(\arg \min J_{2}(\boldsymbol{w})\right)
$$

i.e. $J_{1}(c \boldsymbol{w})=J_{2}(\boldsymbol{w})$ and hence that one can solve an elastic net problem using a lasso solver on modified data.

Problem 2

Consider the DAG G in the following figure. Assume it is a minimal I-map for $p(A, B, C, D, E, F, X)$. Now consider marginalizing out X. That is, X is unobserved and we construct $p(A, B, C, D, E, F)=$ $\sum_{X} p(A, B, C, D, E, F, X)$. Construct a new DAG G^{\prime} which is a minimal I-map for $p(A, B, C, D, E, F)$. Specify (and justify) which extra edges need to be added. Discuss which pairs of variables are conditionally independent in your new graph.

Problem 3

1. Convert the BN above to MRF.
2. Fill in the blanks to make a true statement: \qquad and \qquad are d-separated given \qquad in the BN, but not d-separated in the MRF.

Problem 4

Consider a MRF of 4 random binary variables A, B, C, D, corresponding to 4 students in a CMPT 727 study group. Each variable represents whether the student has a correct understanding of the EM algorithm.

The potential function tables are defined as follows:

$($ var1, var2)	$\psi(A, B)$	$\psi(B, C)$	$\psi(C, D)$	$\psi(D, A)$
$(0,0)$	100	10	1	10
$(0,1)$	1	1	10	1
$(1,0)$	1	1	10	1
$(1,1)$	100	50	1	20

This table is formed based on observation that A and B are good friends, so they are prone to the same understanding (either correct or incorrect); two other pairs (B,C) and (D,A) also tend to have same understanding but they are more likely be correct. C and D usually argue, and they are more likely to hold different opinions.

1. Calculate the partition function Z.
2. What is the probability that all students in this group have a correct understanding of the EM algorithm?

Problem 5

Please write one thing from this course you found confusing, a topic you would like to hear more about, or something you found particularly interesting.

