Problem 1

The Categorical distribution is defined as

$$
\operatorname{Cat}(y \mid \vec{\theta})=\prod_{c=1}^{C} \theta_{c}^{\mathbb{1}(y=c)},
$$

for $y \in\{1,2, \ldots, C\}$ where C is the number of labels and $C>1$. We have observed N observations of Y, with N_{k} observation of each label. Suppose we decide to place a (unusual) zero-mean, identity-covariance Gaussian prior on $\vec{\theta}, p(\vec{\theta}) \propto \exp \left(-\theta^{\top} \theta\right)$.
You would like to find the MAP of $\vec{\theta}$.

1. Form the Lagrangian expression $\mathcal{L}(\vec{\theta}, \lambda)$.
2. Using your answer in Part 1., calculate the partial derivative with respect to each θ_{k} and λ.
3. Briefly describe how to use your answer to Part 2 to find the MAP for each θ_{k}. (You do not need to find an explicit solution.)

Problem 2

Consider a quadratic objective function on \mathbf{R}^{2}

$$
f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right)
$$

where $\gamma>0$. We would like to apply the gradient descent method with exact line search, starting at the point $\vec{x}^{(0)}=(\gamma, 1)$.

1. Derive the exact line search update.
2. Suppose $\gamma=10$, what is the value of $\vec{x}^{(3)}$?

Problem 3

In many classification problems one has the option either of assigning x to class j or, if you are too uncertain, of choosing a "reject" option. If the cost for rejects is less than the cost of falsely classifying the object, it may be the optimal action. Let α_{i} mean you choose action i,
for $i=1: C+1$, where C is the number of classes and $C+1$ is the reject action. Let $Y=j$ be the true (but unknown) state of nature. Define the loss function as follows

$$
\lambda\left(\alpha_{i} \mid Y=j\right)= \begin{cases}0 & \text { if } i=j \text { and } i, j \in\{1, \ldots, C\} \\ \lambda_{r} & \text { if } i=C+1 \\ \lambda_{s}, & \text { otherwise }\end{cases}
$$

In other words, you incur 0 loss if you correctly classify, you incur λ_{r} loss (cost) if you choose the reject option, and you incur λ_{s} loss (cost) if you make a substitution error (misclassification). Both λ_{r} and λ_{s} are positive numbers.

1. Show that when we decide to choose a class (and not reject), we always pick the most probable one.
2. Show that the minimum risk is obtained if we decide to pick the most probable class $j_{\max }=\arg \max _{j} p(Y=j \mid x)$ and if $p\left(Y=j_{\max } \mid x\right) \geq 1-\frac{\lambda_{r}}{\lambda_{s}}$; otherwise we decide to reject.
3. Describe qualitatively what happens as $\lambda_{r} / \lambda_{s}$ is increased from 0 to 1 (i.e., the relative cost of rejection increases).

Problem 4

Please write one thing from this course you found confusing, a topic you would like to hear more about, or something you found particularly interesting.

