
Social Implications of a
Computerized Society

Computer Errors
Instructor: Oliver Schulte

Simon Fraser University

Failures and Errors in
Computer Systems

• Most computer applications are so complex it
is virtually impossible to produce programs
with no errors

• The cause of failure is often more than one
factor

• Computer professionals must study failures to
learn how to avoid them

• Computer professionals must study failures to
understand the impacts of poor work

Discussion Question

• Have you personally suffered from
computer system errors? What should
change to prevent these errors?

Errors and consequences

Error Types

• Data Entry Errors
– Along with privacy, another concern about large

databases.
– Recommended principle: give people option to

view and correct information.
• Crashes and Safety-Critical Applications
• Performance Failures: Estimated 5-15% of IT

projects are abandoned soon before or after delivery
as “hopelessly adequate”

Data Errors

• Inaccurate and misinterpreted data in databases
• Billing errors
• no-fly lists: Joseph Adams on list è J(ane) Adams

could not board
• Causes

– Large population where people may share names
– Reuse of previous name match software
– Automated processing may not be able to recognize

special cases
– Overconfidence in the accuracy of data
– Errors in data entry
– Lack of accountability for errors

System Failures

• AT&T, Amtrak, Skype
• Businesses have gone bankrupt after spending huge

amounts on computer systems that failed
• Ariana 5 Rocket: went off-course and was destroyed

after 40 seconds.
– float overflow because faster Ariana 5 faster than

Ariana 4
Denver Airport:
• Baggage system failed due to real world problems,

problems in other systems and software errors
• Delay cost $30 Million/month.

Causes
• Main causes:

– Time allowed for development was insufficient
– Denver made significant changes in

specifications after the project began
• Great Reference: The Mythical Man-Month

– Available for free to SFU students on-line

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://learning.oreilly.com/library/view/mythical-man-month-the/0201835959/ch12.xhtml

safety-critical applications

Safety-Critical
Applications

• Air traffic control is extremely complex,
tracking airplanes that move very fast

• Trend towards autonomous planes (TCAS)
computers avoid collisions, not pilots

• In spite of problems, computers and other
technologies have made air travel safer

• ACM maintains a RISK update

https://www.cbc.ca/news/world/indonesia-lion-air-crash-preliminary-report-released-1.4922778?cmp=rss
http://catless.ncl.ac.uk/risks

Case Study: The Therac-25

Therac-25 Radiation Overdoses:
• Massive overdoses of radiation were given;

the machine said no dose had been
administered at all

• Caused severe and painful injuries and the
death of three patients

• Important to study to avoid repeating errors
• Manufacturer, computer programmer, and

hospitals/clinics all have some responsibility

Software and Design
Problems

• Re-used software from older systems,
unaware of bugs in previous software

• Weaknesses in design of operator interface
• Inadequate test plan
• Bugs in software

– Allowed beam to deploy when table not in
proper position

– Ignored changes and corrections operators
made at console

Why So Many Incidents?

• Hospitals had never seen such massive
overdoses before, were unsure of the cause

• Manufacturer said the machine could not have
caused the overdoses and no other incidents had
been reported (which was untrue)

• The manufacturer made changes to the turntable
and claimed they had improved safety after the
second accident. The changes did not correct
any of the causes identified later

Lack of Reactions

• Recommendations were made for further
changes to enhance safety; the manufacturer
did not implement them

• The FDA declared the machine defective
after the fifth accident

• The sixth accident occurred while the FDA
was negotiating with the manufacturer on
what changes were needed

• Similarities to Boeing 737 Max story

https://www.ft.com/content/545fca89-a91d-4db0-a7ea-b7f9ae231090

Discussion Questions

• Have we become too dependent on
computers? Should we use them less?

software complexity and
specifications

Sources of Complexity

• Computer is doing a difficult job.
• “Non-linearity” (discontinuity):

– In physical device, small error usually
makes small difference in performance.

– In computer program, small typo can
make big difference.

Increasing Reliability and
Safety

Professional techniques:
• Importance of good software engineering and

professional responsibility
• unit tests! Break systems into reliable pieces
• User interfaces and human factors

– Feedback
– Should behave as an experienced user expects
– Workload that is too low can lead to mistakes

• Redundancy and self-checking
• Testing

– Include real world testing with real users

Understand the specs

• Specs = specifications, desired
performance.

• What is the problem the user wants to
solve? What are the circumstances
under which the system will be
deployed?

Example for Specification
Issues

• Automated airport luggage system failed in
several airports (Kuala Lumpur, Detroit).
– One problem was designers did not allow

for data entry errors.
– Also hardware failures (scanners).

• MS handwriting system did not work for Bill
Gates – he is left-handed!

• Newborn baby weighing system rounded off
ounces---important for premature babies!

Ways to get the specs right

• Testing, including beta testing by
community.

• Consult with users.
• Write down your assumptions. (Ideally

in the code.) Can you prove
correctness?

• Formal Verification. (Turing Award
2008!)

https://www.drdobbs.com/2007-turing-award-winners-announced/206103622

Practical Problems: Specs

• Too little training in vague specs - assignments have strictly
defined instructions.

• Problems with Testing.
– Confirmation bias: People tend to look for ways to

confirm their system works, not for ways to make it crash
Ø3rd-party testing

– Expensive in money and time.
• Problems with User Consultation.

– Access to users can be limited (managers, experts).
– Single demo for users different from real-life, continuous

use.
– Users resist new technology.

What Can Go Wrong?

• Consider issues of safety, risk, privacy.
• Do not rely on customization---users may not

bother to change defaults.
• Be open about capabilities and limitations of

your system.
• In practice:

– Pressure to cut corners, and to sell.
– Not easy to communicate risks to users (cf.

medical treatment side effects).

Communicating with
Users

• Explain product/design choices, security
risks.

• Give clear, interesting, well-prepared
presentations.
– Take responsibility for liveliness,

getting attention.
– If a user does not get the relevant

info, it is your responsibility too.

Learn to Communicate
with Managers

• True story: Programmer asked for meeting with owner of her
company. Explains that beta testing should not be skipped and why.
Owner accepts, reschedules release date. Programmer becomes
head of quality control.

Problems:
• Group Dynamics, e.g. Middle Managers want to

save face.
• Honouring Sunk costs: Refusal to admit a project

is in trouble
• Software Market does not encourage quality.

Economic and legal
perspectives

NOT ON EXAM

Economic Perspectives on the
Software Market: The

Buyers/Users.
• The Software Market has a lot of what economists call
“information asymmetries”, i.e. the sellers know things
the buyers do not.

• Primary functionality is relatively easy to assess for
user (e.g., play music, word processing).

• Reliability, security, risk very difficult to assess.
• In such markets, users focus on:

– What they can assess, i.e. what does this thing do?
– Reputation markers, e.g. reviews, brands (MS, HP,

IBM etc.)
– Use by friends, co-workers etc. Þ networking

effects.

Economic Perspectives on the
Software Market: The
Designers/Companies.

• Software businesses have cash flow issues.
– Large investment required before product

ready for sale (gets worse as complexity
increases) Þ “barrier to market entry”.

– Solutions:
• Venture capital.
• Government subsidies/loans.
• Open Source Development.

Market Incentives for
Software Companies

• Reliability, security often not big selling
points because hard to assess by end user
(see above) Þ market does not reward
investment.

• Unreliable systems can actually make more
profit: keep charging for updates, support
(SAP, SIMS?).

• Cash flow problems create pressure to
release fast, to get more sales or at least
more investment.

A Simple Model of Market
Incentives: calculate the profits

Options for
business/
user
population

20% of users
are sensitive
to reliability,
safety,
privacy

80% of users
buy if they
want the
primary
function

High quality
product,
costs $105

Sell each
product for
$10

$10

Low quality
product

$0 $10

Law and Regulation

• Criminal and civil penalties
– Provide incentives to produce good

systems, but should not inhibit innovation
• Warranties for consumer software

– Most are sold ‘as-is’
• Regulation for safety-critical applications
• Professional licensing

– Arguments for and against

Discussion Question

1. Should there be mandatory
professional licensing for IT
professionals (as with engineers?)

2. Should there be more warranty for
software (e.g., can sue manufacturer if
software causes damage)? For certain
kinds of software?

Theme for the Future?

• Are we reaching limits in computer
use/scope?
– Moore’s “law” on processor performance

is no longer valid.
– Complex systems (cell phones have

several million lines of code), hard to test,
expand, integrate.

– Unsolved tasks are complex?!

