
CMPT 300 Processes Page 1

Today’s Plan

Today’s topics:

ì Process Creation
ì Process flow graphs

ì Cobegin/Coend

ì Fork/Join

ì The Critical Section Problem
Last time:

ì Processes

ì Precedence &
Concurrency

Upcoming:

ì Assignment 1

ì Practice Quiz 1

CMPT 300 Processes Page 2

Process Flow Graph Examples

s(s(1,p(s(p(2,3),4),5)),6)

ì S & P compositions are difficult to read and write, and
are unable to describe non-properly nested situations

CMPT 300 Processes Page 3

Cobegin/Coend Construct

ì This is just another way of writing S() and P() functions
ì Only appropriate for use with properly nested graphs

ì Statements written between a cobegin/coend pair
are executed in parallel
ì If statements are nested, then they all begin immediately

after the cobegin statement, and the last one to finish does
so immediately before the coend statement

ì Statements written between a begin/end pair are
executed in serial, in the order they appear

CMPT 300 Processes Page 4

Cobegin/Coend Examples

P2 P3 P4
P1

P1

P2 P3

P5P4

P6

CMPT 300 Processes Page 5

Process Creation Constructs

ì One mechanism for creating processes is called fork
and join

ì Fork(label L) produces 2 concurrent processes, one
starts immediately after the fork statement, and one
starts at label L
ì Has the effect of splitting a single process execution into

two concurrent processes
ì Join(int x) recombines x processes into 1,

effectively throwing away the first x-1 processes that
reach it, and continuing execution after the Join
statement, when the xth process reaches it

CMPT 300 Processes Page 6

Fork and Join Example

P1

P2 P3

P5P4

P6

CMPT 300 Processes Page 7

Fork and Join Example

P1

P7
P6

P8

P5

P2

P4

P3

CMPT 300 Processes Page 8

Critical Sections

ì Problem Definition
ì Software Solutions
ì Hardware Solutions
ì Semaphores
ì Monitors
ì Inter-Process Communication

CMPT 300 Processes Page 9

The Critical Section Problem

ì Critical Sections:
ì Sections of code in separate processes that do not obey

Bernstein’s conditions

ì A solution will provide some method of only allowing one
process to access their critical section at a time.

ì Two critical sections are said to be related if they are in
separate processes and do not obey Bernstein’s conditions.

E.g. P1: x = 1; P2: x = 2; P3: y = 3;
y = 2;

CMPT 300 Processes Page 10

Example: Producer / Consumer

Common data structure:

typedef struct node {

int item;

node *next; } NODE;

Producer:

while (1) {

/* produce a new item */

(big piece of code)

newnode = (NODE *)malloc(sizeof(NODE));

newnode->item = NewItem;

newnode->next = first;

first = newnode;

}

Consumer:

while (1) {

while (!first);

mynode = first;

first = first->next;

item = mynode->item;

/* consume an item */

(some other big piece
of code)

}

CMPT 300 Processes Page 11

Example: Producer / Consumer

Producer’s item ignored

C: mynode = first
P: newnode->next = first
P: first = newnode
C: first = first->next

Consumer’s deletion ignored:

C: mynode = first
P: newnode->next = first
C: first = first->next
P: first = newnode

