Problem 1

Reproduce the formatting of the following equation. You might want to use the following commands:
\align; \intertext; \left; \right; \sum; \prod \dots; \frac; \log;

$$
\begin{align*}
\frac{\sum_{i=1}^{n} \log \left(a_{i}\right)}{n} & =\frac{\log \left(a_{1}\right)+\log \left(a_{2}\right)+\cdots+\log \left(a_{n}\right)}{n} \tag{1}\\
& =\frac{\log \left(a_{1} a_{2} \ldots a_{n}\right)}{n} \tag{2}\\
& =\log \left[\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}}\right] \tag{3}
\end{align*}
$$

because $\log (M N)=\log (M)+\log (N)$ and $\log \left(M^{k}\right)=k \log (M)$

$$
\begin{equation*}
=\log \left(\prod_{i=1}^{n} \sqrt[n]{a_{i}}\right) \tag{4}
\end{equation*}
$$

Problem 2

Suppose a crime has been committed. Blood is found at the scene for which there is no innocent explanation. It is of a type which is present in 1% of the population.

1. The prosecutor claims: "There is a 1% chance that the defendant would have the crime blood type if he were innocent. Thus there is a 99% chance that he guilty". This is known as the prosecutor's fallacy. What is wrong with this argument?
2. The defender claims: "The crime occurred in a city of 800,000 people. The blood type would be found in approximately 8000 people. The evidence has provided a probability of just 1 in 8000 that the defendant is guilty, and thus has absolutely no bearing on the investigation." This is known as the defender's fallacy. What is wrong with this argument?

Problem 3

My neighbor has two children. Assume that the gender of a child is a coin flip. Let the genders of the children be G_{1} and G_{2}. For both questions, write the probability symbolically (e.g. " $P(A \mid B)$ ") and give the value.

1. Suppose I happen to see one of his children run by, and it is a boy. What is the probability that the other child is a girl?
2. Suppose instead that I ask him whether he has any boys, and he says yes. What is the probability that one child is a girl?

Problem 4

Consider the Numbers game with one-sided interval hypotheses $h_{\leq x}$ for numbers 1 up to 10 , where $h_{\leq x}=\{1,2, \ldots, x\}, x \in\{1 \ldots 10\}$. Assume we have a uniform prior over h.

1. Show that the $h_{m l e}=h_{\leq \max (S)}$ for a given set of numbers $S=\left\{x_{1}, x_{2}, \ldots\right\}$.
2. Briefly say why the MAP estimate $=$ MLE.
3. For Parts 3 and 4, let's suppose $S=\{5,9\}$. What is the plug-in approximation of the posterior predictive distribution for new data point x ?
4. What is the full posterior predictive distribution?
