Problem 1

Define

$$
J_{1}(\boldsymbol{w})=|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}|^{2}+\lambda_{2}|\boldsymbol{w}|^{2}+\lambda_{1}|\boldsymbol{w}|_{1}
$$

and

$$
J_{2}(\boldsymbol{w})=|\tilde{\boldsymbol{y}}-\tilde{\boldsymbol{X}} \boldsymbol{w}|^{2}+c \lambda_{1}|\boldsymbol{w}|_{1}
$$

where $c=\left(1+\lambda_{2}\right)^{-\frac{1}{2}}$ and

$$
\tilde{\boldsymbol{X}}=c\binom{\boldsymbol{X}}{\sqrt{\lambda_{2}} \boldsymbol{I}_{d}}, \tilde{\boldsymbol{y}}=\binom{\boldsymbol{y}}{\mathbf{0}_{d \times 1}}
$$

Show

$$
\arg \min J_{1}(\boldsymbol{w})=c\left(\arg \min J_{2}(\boldsymbol{w})\right)
$$

i.e. $J_{1}(c \boldsymbol{w})=J_{2}(\boldsymbol{w})$ and hence that one can solve an elastic net problem using a lasso solver on modified data.

Problem 2

Consider performing linear regression with an orthonormal design matrix, so $\left\|\boldsymbol{x}_{:, k}\right\|_{2}^{2}=1$ for each column (feature) k, and $\boldsymbol{x}_{:, k}^{T} \boldsymbol{x}_{:, j}=0$ so we can estimate each parameter w_{k} separately. The following figure plots \tilde{w}_{k} vs $c_{k}=2 \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{x}_{:, k}$, the correlation of feature k with the response, for 3 different esimation methods: ordinary least squares (OLS), ridge regression with parameter λ_{2}, and lasso with parameter λ_{1}.

1. Unfortunately we forgot to label the plots. Which method does the solid (1), dotted (2) and dashed (3) line correspond to?
2. What is the value of λ_{1} ?
3. What is the value of λ_{2} ?

Problem 3

Please write one thing from this course so far that you found confusing, a topic you would like to hear more about, or something you found particularly interesting.

