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Problem 1: Regularizing separate terms in 2d logistic

regression

For each of the following questions, Sketch a possible decision boundary corresponding to ŵ
in the

q1_fig.JPG

Be sure to answer all the questions and include the figure in your submission.

1. Consider the data in the figure above, where we fit the model p(y = 1|x,w) = σ(w0 +
w1x1 + w2x2). Suppose we fit the model by maximum likelihood, i.e., we minimize

J(w) = −`(w, Dtrain)

where `(w, Dtrain) is the log likelihood on the training set. Sketch a possible decision
boundary. Is your answer (decision boundary) unique? How many classification errors
does your method make on the training set?

2. Now suppose we regularize only the w0 parameter, i.e., we minimize

J(w) = −`(w, Dtrain) + λw2
0

Suppose λ is a very large number, so we regularize w0 all the way to 0, but all other
parameters are unregularized. Sketch a possible decision boundary. How many classifi-
cation errors does your method make on the training set? Hint: consider the behavior
of simple linear regression, w0 + w1x1 + w2x2 when x1 = x2 = 0.
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3. Now suppose we heavily regularize only the w1 parameter, similar to Part 2, i.e., we
minimize

J(w) = −`(w, Dtrain) + λw2
1

Sketch a possible decision boundary. How many classification errors does your method
make on the training set?

4. Now suppose we heavily regularize only the w2 parameter, similar to Part 2 and Part 3.
Sketch a possible decision boundary. How many classification errors does your method
make on the training set?

Problem 2

Suppose we train the following binary classifiers via maximum likelihood.

• GaussI: A generative classifier, where the class conditional densities are Gaussian, with
both covariance matrices set to I (identity matrix), i.e.,p(x|y = c) = N (x|µc, I). We
assume p(y) is uniform.

• GaussX: as for GaussI, but the covariance matrices are unconstrained, i.e., p(x|y =
c) = N (x|µc,Σc).

• LinLog: A logistic regression model with linear features.

• QuadLog: A logistic regression model, using linear and quadratic features (i.e., polyno-
mial basis function expansion of degree 2). After training we compute the performance
of each model M on the training set as follows:

L(M) =
1

n

n∑
i=1

log p(yi|xi, θ̂,M)

(Note that this is the conditional log-likelihood p(y|x, θ̂) and not the joint log-likelihood
p(y,x|θ̂) We now want to compare the performance of each model. We will write
L(M) ≤ L(M ′) if model M must have lower (or equal) log likelihood (on the training
set) than M ′, for any training set (in other words, M is worse than M ′, at least as far
as training set logprob is concerned).

For each of the following model pairs, state whether L(M) ≤ L(M ′), L(M) ≥ L(M ′)), or
whether no such statement can be made (i.e., M might sometimes be better than L(M ′) and
sometimes worse); also, for each question, briefly (1-2 sentences) explain why.

1. GaussI, LinLog.
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2. GaussX, QuadLog.

3. LinLog, QuadLog.

4. GaussI, QuadLog.

5. Now suppose we measure performance in terms of the average misclassification rate on
the training set:

R(M) =
1

n

n∑
i=1

I(yi 6= ŷ(xi))

Is it true that L(M) > L(M ′) always implies that R(M) < R(M ′)? If so, prove it. If
not, give a counter-example.

Problem 3

Please write one thing from this course so far that you found confusing, a topic you would
like to hear more about, or something you found particularly interesting.
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