Problem 1

The Poisson distribution is defined as

$$\operatorname{Poi}(x|\lambda) = e^{-\lambda} \frac{\lambda^x}{x!},$$

for $x \in \{0, 1, 2, ...\}$ where $\lambda > 0$ is the rate parameter. Suppose we have observed $\{x_1, x_2, ..., x_n\}$ drawn from Poi (λ) What is the MLE of λ ?

Problem 2

Consider samples x_1, \ldots, x_n from a Gaussian random variable with known variance σ^2 and unknown mean μ . We further assume a prior distribution (also Gaussian) over the mean, $\mu \sim \mathcal{N}(m, s^2)$, with fixed mean m and fixed variance s^2 . Thus the only unknown is μ .

- 1. Calculate the MAP estimate $\hat{\mu}_{MAP}$. You can state the result without proof. Alternatively, with a bit more work, you can compute derivatives of the log posterior, set to zero and solve.
- 2. Show that as the number of samples n increase, the MAP estimate converges to the maximum likelihood estimate.
- 3. Suppose n is small and fixed. What does the MAP estimator converge to if we increase the prior variance s^2 ?
- 4. Suppose n is small and fixed. What does the MAP estimator converge to if we decrease the prior variance s^2 ?

Problem 3

Let θ be a univariate, continuous parameter. Consider the following optimization, which adds a regularization term to the log likelihood to identify a regularized MLE.

$$\hat{\theta}_{reg} = \mathop{\arg\min}_{\theta} - \log p(D|\theta) + \lambda C(\theta) \qquad \lambda > 0$$

- 1. Define a probability distribution $p(\theta)$, such that if $p(\theta)$ is used as the prior for θ , the MAP estimate $\hat{\theta}_{MAP} = \hat{\theta}_{reg}$. You may assume that C has a finite integral.
- 2. According to $p(\theta)$, what is the relative likelihood of two parameters $p(\theta_1)/p(\theta_2)$?
- 3. Based on your answer to (2), qualitatively, how does $p(\theta)$ change as we decrease λ ? Increase?

Problem 4

On average, how many hours have you spent on each assignment so far in this course?

Problem 5

Please write any comments, concerns or suggestions about the course so far here.