Artificial Neural Networks

Oliver Schulte
School of Computing Science
Simon Fraser University

Neural Networks

- Neural networks arise from attempts to model human/animal brains
 - · Many models, many claims of biological plausibility
- We will focus on multi-layer perceptrons
 - Mathematical properties rather than biological plausibility

Uses of Neural Networks

Pros

- Good for continuous input variables.
- General continuous function approximators.
- Highly non-linear.
- Learn features.
- Good to use in continuous domains with little knowledge:
 - · When you don't know good features.
 - You don't know the form of a good functional model.

Cons

- · Not interpretable, "black box".
- · Learning is slow.
- Good generalization can require many datapoints.

Function Approximation Demos

- Home Value of Hockey State https://user-images.githubusercontent.com/22108101/ 28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
- Function Learning Examples (open in Safari)
 http://neuron.eng.wayne.edu/
 bpFunctionApprox/bpFunctionApprox.html

Applications

There are many, many applications.

- World-Champion Backgammon Player.
 http://en.wikipedia.org/wiki/TD-Gammon
 http://en.wikipedia.org/wiki/Backgammon
- No Hands Across America Tour.
 http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
- Digit Recognition with 99.26% accuracy.
- Speech Recognition
 http://research.microsoft.com/en-us/news/
 features/speechrecognition-082911.aspx
- http://deeplearning.net/demos/

Outline

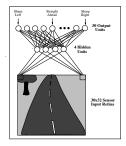
Feed-forward Networks

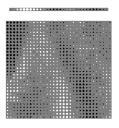
Network Training

Error Backpropagation

Examples

No Hands Across America





Outline

Feed-forward Networks

Network Training

Error Backpropagation

Examples

Neurons

Model of an individual neuron j

- Pass input in_j through a non-linear activation function to get output a_j = g(in_j)
- For non-input nodes, the input is the weighted linear sum of connected node activations + bias w_{0,j}:

$$in_j = \sum_{i=0}^n w_{ij} a_i$$

Neurons

Model of an individual neuron j

- Pass input in_j through a non-linear activation function to get output a_j = g(in_j)
- For non-input nodes, the input is the weighted linear sum of connected node activations + bias w_{0,j}:

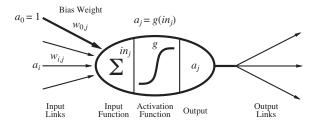
$$in_j = \sum_{i=0}^n w_{ij} a_i$$

Neurons

Model of an individual neuron j

- Pass input in_j through a non-linear activation function to get output a_j = g(in_j)
- For non-input nodes, the input is the weighted linear sum of connected node activations + bias w_{0,j}:

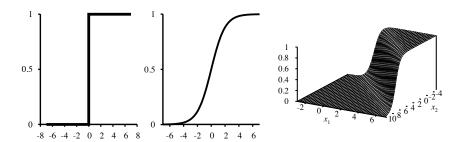
$$in_j = \sum_{i=0}^n w_{ij} a_i$$



Activation Functions

- Can use a variety of activation functions
 - Sigmoidal (S-shaped)
 - Logistic sigmoid $1/(1 + \exp(-a))$ (useful for binary classification)
 - Hyperbolic tangent tanh
 - Radial basis function $z_j = \sum_i (x_i w_{ji})^2$
 - Softmax
 - Useful for multi-class classification
 - Hard Threshold
 - Rectified Linear Unit (deep learning)
 - ...
- Should be differentiable for gradient-based learning (later)
- Can use different activation functions in each unit

Activation Functions Visualized

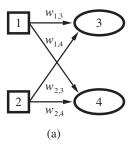


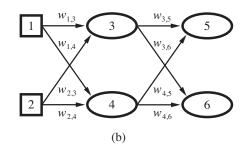
Left Threshold

Middle Logistic sigmoid $Logistic(x) = \frac{1}{1 + exp(-x)}$ maps a real number to a probability

Right Logistic regression $Logistic(w \bullet x)$

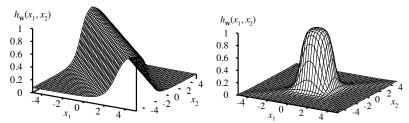
Network of Neurons





Function Composition

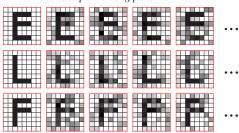
Think logic circuits

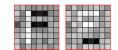


Two opposite-facing sigmoids = ridge. Two ridges = bump.

Hidden Units As Feature Extractors

sample training patterns





learned input-to-hidden weights

- 64 input nodes
- 2 hidden units
- 2x learned weight vector at hidden unit

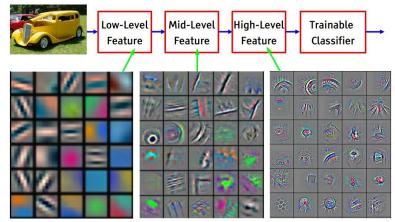
Image Analysis Tasks

Classification

Retrieval

[Krizhevsky 2012]

Neural Net Learned Features



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Examples

Measuring Training Error

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- Training data are (x_n, y_n)
- Corresponds to neural net with multiple output nodes
- Given a set of weight values w, the network defines a function $h_w(x)$.
- Can train by minimizing L2 loss:

$$E(w) = \sum_{n=1}^{N} |h_w(x_n) - y_n|^2 = \sum_{n=1}^{N} \sum_{k} (y_k - a_k)^2$$

where k indexes the output nodes

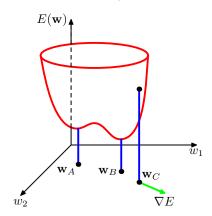
Measuring Training Error

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- Training data are (x_n, y_n)
- Corresponds to neural net with multiple output nodes
- Given a set of weight values w, the network defines a function $h_w(x)$.
- Can train by minimizing L2 loss:

$$E(\mathbf{w}) = \sum_{n=1}^{N} |\mathbf{h}_{\mathbf{w}}(\mathbf{x}_n) - \mathbf{y}_n|^2 = \sum_{n=1}^{N} \sum_{k} (y_k - a_k)^2$$

where k indexes the output nodes

Parameter Optimization



- For either of these problems, the error function $E(\mathbf{w})$ is nasty
 - Nasty = non-convex
 - Non-convex = has local minima

Gradient Descent

- The function $h_w(x)$ implemented by a network is complicated.
- No closed-form: Use gradient descent.
- It isn't obvious how to compute error function derivatives with respect to hidden weights.
 - · The credit assignment problem.
- Backpropagation solves the credit assignment problem

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Examples

Error Backpropagation

- Backprop is an efficient method for computing error derivatives $\frac{\partial E_n}{\partial w_n}$ for *all* nodes in the network. Intuition:
 - Calculating derivatives for weights connected to output nodes is easy.
 - Treat the derivatives as virtual "error"—how far is each node activation "off". Compute derivative of error for nodes in previous layer.
 - 3. Repeat until you reach input nodes.
- Propagates backwards the output error signal through the network.

Error at the output nodes

- First, feed training example x_n forward through the network, storing all node activations a_i
- Calculating derivatives for weights connected to output nodes is easy.
- For output node j with activation $a_j = g(in_j) = g(\sum_i w_{ij}a_i)$:

$$\frac{\partial E_n}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \frac{1}{2} (y_j - a_j)^2 = -a_j \times g'(in_j) \times (y_j - a_j)$$

- 0 if no error, or if input a_i from node i is 0.
- Modified Error: $\Delta[j] \equiv g'(in_j)(y_j a_j)$.
- Gradient Descent Weight Update

$$w_{ij} \leftarrow w_{ij} + \alpha \times a_i \times \Delta[j]$$

Error at the output nodes

- First, feed training example x_n forward through the network, storing all node activations a_i
- Calculating derivatives for weights connected to output nodes is easy.
- For output node j with activation $a_j = g(in_j) = g(\sum_i w_{ij}a_i)$:

$$\frac{\partial E_n}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \frac{1}{2} (y_j - a_j)^2 = -a_j \times g'(in_j) \times (y_j - a_j)$$

- 0 if no error, or if input a_i from node i is 0.
- Modified Error: $\Delta[j] \equiv g'(in_j)(y_j a_j)$.
- Gradient Descent Weight Update:

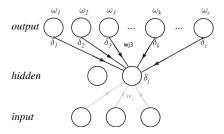
$$w_{ij} \leftarrow w_{ij} + \alpha \times a_i \times \Delta[j]$$

Error at the hidden nodes

- Consider a hidden node i connected to downstream nodes in the next layer.
- The **modified error** signal $\Delta[i]$ is node activation derivative, times the *weighted sum of contributions to the connected errors*.
- In symbols,

$$\Delta[i] = g'(in_i) \sum_j w_{ij} \Delta[j].$$

Backpropagation Picture



The error signal at a hidden unit is proportional to the error signals at the units it influences:

$$\Delta[j] = g'(in_j) \sum_k w_{jk} \Delta[k].$$

The Backpropagation Algorithm

- 1. Apply input vector x_n and forward propagate to find all inputs in_i and outputs a_i .
- 2. Evaluate the error signals Δ_k for all output nodes.
- 3. Backpropagate the Δ_k to obtain error signals Δ_j for each hidden node.
- Perform the gradient descent updates for each weight vector w_{ii}:

$$w_{ij} \leftarrow w_{ij} + \alpha \times a_i \times \Delta[j]$$

Demo Alspace http://aispace.org/neural/.

Other Learning Topics

- Regularization: L2-regularizer (weight decay).
- Experimenting with Network Architectures is often key.
- Learn Architecture
 - Prune Weights: the Optimal Brain Damage Method.
 - Grow Network: Tiling, Cascade-Correlation Algorithm.

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Examples

Applications of Neural Networks

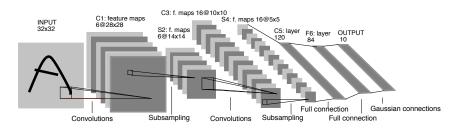
- Many success stories for neural networks
 - Credit card fraud detection
 - Hand-written digit recognition
 - Face detection
 - Autonomous driving (CMU ALVINN)

Hand-written Digit Recognition

```
3681796691
6757863485
21797/2845
4819018894
7618641560
7592658197
1222234480
0 2 3 8 0 7 3 8 5 7
0146460243
7128169861
```

- MNIST standard dataset for hand-written digit recognition
 - 60000 training, 10000 test images

LeNet-5



- LeNet developed by Yann LeCun et al.
 - Convolutional neural network
 - Local receptive fields (5x5 connectivity)
 - Subsampling (2x2)
 - Shared weights (reuse same 5x5 "filter")
 - Breaking symmetry
- See
 http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx

The 82 errors made by LeNet5 (0.82% test error rate)

Conclusion

- Feed-forward networks can be used for predicting discrete or continuous target variables
- Very expressive, can approximate arbitrary continuous functions.
- Different activation functions possible.
- Learning is more difficult, error function has many local minima
 - Use stochastic gradient descent, obtain (good?) local minimum
- Backpropagation for efficient gradient computation.