LEARNING TO ACT

Oliver Schulte

Simon Fraser University



OUTLINE

What is Reinforcement Learning?
Key Definitions

Key Learning Tasks

Reinforcement Learning Techniques

Reinforcement Learning with Neural Nets

Markov Decision Processes



OVERVIEW

Markov Decision Processes



LEARNING TO ACT

So far: learning to predict

Now: learn to act
In engineering: control theory

Economics, operations research: decision and game theory

Markov Decision Processes



EXAMPLES

Fly stunt manoeuvres in a helicopter

Defeat the world champion at Backgammon, Go
Manage an investment portfolio

Control a power station

Make a humanoid robot walk

Play Starcraft, Atari games better than humans

Drive a car

Play hockey

Markov Decision Processes


https://www.youtube.com/watch?v=cUTMhmVh1qs

A NEW KIND OF LEARNING

There is no supervisor, only a reward signal
No labels “wrong choice, right choice”

Feedback is delayed, not instantaneous

Time really matters (sequential, non i.i.d data)

Agent’s actions affect the subsequent data it receives

Markov Decision Processes



RL FRAMEWORK
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At each step t the agent: ="
&/
Executes action A, N

Receives observation O,

Receives scalar reward R,

The environment:

Receives action A,

Emits observation O,

Emits scalar reward R;+,
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REMEMBER YOUR PEAS

Performance, Environment, Actuators, Sensors
Learning to play video games

Exercise:What are the PEAS?
Learn to flip pancakes

Exercise:What are the PEAS?

Autonomous Helicopter

An example of imitation learning: start by observing human actions
Exercise:What are the PEAS!?

Markov Decision Processes


http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=VCdxqn0fcnE
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MARKOV PROCESS

Aka Markov Chains

Think about atomic representation of environment state (Russell and
Norvig)

Like state space in problem search

A Markov process moves from one state to another with a certain
probability

Transition probability: P(s,.; = s’|s, ='s)

Demo

Markov Decision Processes


http://setosa.io/blog/2014/07/26/markov-chains/index.html

EXAMPLE: STUDENT LIFE

Markov Decision Processes

Sample episodes for Student Markov
Chain starting from S§; = C1

517 527 ) ST

@ m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m C1FBFB C1 C2C3PubCl1FBFB
FB C1 C2 C3 Pub C2 Sleep

Source:
David Silver



MARKOV REWARD PROCESS

Markov Process +
Reward R, associated
with state

More generally reward
for transition R(s,s’)

Markov Decision Processes




MARKOV DECISION PROCESSES

Markov decision process (MDP) = Markov reward process + actions
Transition probabilities, rewards depend on actions

Markov game = MDP with actions, rewards for > | agent

Markov Decision Processes



EXAMPLE: STUDENT MARKOV DECISION
PROCESS
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MARKOV CHAINS
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EXERCISES

Consider a Markov chain like the one shown in this demo

What is the probability of the sequence AABB!?

What is the longest possible sequence of observations?

Markov Decision Processes


http://setosa.io/blog/2014/07/26/markov-chains/index.html

MULTI-STEP TRANSITIONS

What is the chance that if we start in state s we will reach state
s’ after a fixed number of n steps!

Think: from initial state, what is the chance of reaching a goal state in
n steps!?

E.g.in this demo, what is the chance that we reach state 3 from
0 after 3 steps!?

What we want is a step-d transition matrix — how can we
compute this efficiently!?

Notation: P4(s’|s)

Markov Decision Processes


http://markov.yoriz.co.uk/

DYNAMIC PROGRAMMING

Think lterative Deepening: Build up transition matrices for
l,2,...,d-1, d steps.

For d = |: Use given transition matrix P(s’|s) = P,(s’[s)
For d+1: Py, (s’|s)=D « P(s’|s™) x P4(s’|s*)

Markov Decision Processes



TREE VISUALIZATION

To compute Py(s,[so)

so 0. 03 0.6

So
0.1 03 06 Uses |-step transition probability P(s*|s)
So S| Sy
0.5+ Uses (d-1)-step transition probability P s, |s*
o e (d-1)-step P Y (d-I)( 180,
S|

Markov Decision Processes °



INFINITE CHAINS

What if we let the number of steps (depth) d go to infinity?

It can be shown that under certain conditions on the chain,
there is limit transition probability matrix P.(s’[s)

This is the stationary transition matrix

Markov Decision Processes



PERFORMANCE METRIC FOR MDPS

Policies and Returns



FACTORED STATES

In practice, RL uses a factored state representation
(see Russell and Norvig).

The state is defined by a list of values for a set of variables.

E.g. in hockey, can include score, game time, locations of
players, location of puck

If we have only 2 integer variables x and y, we can visualize
states in a grid world

Markov Decision Processes


https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

GRID WORLD EXAMPLE

1 START

(a) (b)

Figure 17.1 (a) A simple, stochastic 4 x 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and -1, respectively, and all other
transitions have a reward of —0.04.

Markov Decision Processes



POLICIES

A deterministic policy 1T is a function that maps states to actions
T(s)=a

i.e. tells us how to act
Can also be probabilistic T1(als)
Can be implemented using neural nets.

Represents an agent function

grid world demo

Markov Decision Processes


https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

EXAMPLE

Markov Decision Processes
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OPTIMAL POLICIES

A policy represents an agent (function)

As always we want an agent/policy that maximizes expected
utility

How to define the expected utility of a policy in an MDP?

Basic idea: when we execute the policy in an environment, we
get a sequence of rewards.

Utility = (discounted) sum of rewards

Markov Decision Processes



RETURNS AND DISCOUNTING

Basic Idea: When the agent executes a policy, they get a sequence of rewards ryr,r,

The return of a trajectory is the total sum of rewards.

Typically rewards are weighted by a discount factor y between 0 and |.

Payoff = Return = ry+yr,+y?r,

Markov Decision Processes



(1.1)
(1,1)
(1.1)

EXAMPLE + EXERCISE

> [ > | > 0.8
4 4 - 0.1 0.1
) | < |4 | <
1 2 3 4
Up -0.04 (1,2) Up (1,3)
Up -0.04 (1,2) Up (1,2)
Up -0.04 (1,2) Right (1,2)

Markov Decision Processes

y =0.5

What if y =1?
-0.04 0.8x0.8 -0.04-0.5x0.04
-0.04 2 -0.04-0.5x0.04
-0.04 2 -0.04-0.5x0.04



MDPS VS SEARCH

Solving an MDRP is like planning in problem search

Input: states, transition probabilities, reward function

Output: optimal policy

State

Deterministic Transitions
NextState(state,action)

Edge Cost cost(state,state’)
Sum of Edge Costs
Reach Goal State with minimum total cost

Ma Plan = sequence of actions

State

Non-deterministic Transition Probabilities
P(state’[state,action)

Transition Reward R(state,action,state’)
Sum of Rewards = Return
Maximize Sum of Rewards = Return

Policy: select action in each state



WHY DISCOUNT?

Reward in Markov decision processes are discounted.Why!?

If the reward is financial,immediate rewards may earn more interest than delayed rewards
Mathematically convenient to discount rewards for infinite trajectories (more below)
Avoids infinite returns in cyclic Markov processes (like cyclic search)

Uncertainty about the future may not be fully represented

There may be a small probability that process ends

Animal/human behaviour shows preference for immediate reward

Markov Decision Processes a



EXPECTED UTILITY FOR POLICIES

Intuition: expected return (total reward) of policy 1T from state s
= return from all possible trajectories, weighted by the probability of a

trajectory given the policy
= Z trajectories T P(TlS,Tl') X return(t)

We write VT (s) for the expected return of policy 1 from state s after d
steps

Like depth d

In RL, the term “value function” is used instead of “expected utility”

Markov Decision Processes



|-STEP EXPECTED UTILITY

How can we compute the values V,"(s) = expected return
after | step!?

Directly from MDP:
ViT(s)=2s P(s'[TT(s),5) X r(s,a.8")

Probability of next state given Reward associated with transition
current state and policy action

Markov Decision Processes



TREE VISUALIZATION

To compute V,"(s,)

so 0.1 03 06
S0
0.1 03 06 Uses |-step transition probability P(s*|s,)

So S| S

r(So,T(S0),S0) r(so,T(S0),S1) r(so,T(S0),$2)

Markov Decision Processes



EXAMPLE + EXERCISE

> | > | > 0.8 ) ComputeV|"( l, |)
b b | = * Exercise: what if (1, )=Right?
\ 4 o %1 < So which move is better Up or Right?

(1,2) 0.04 08 0.8 x -0.04
2,1 004 0.l 0.1 x -0.04
(1,1) 0.04 0. 0.1 x -0.04

Markov Decision Processes a



D-STEP EXPECTED UTLITY:
THE BELLMAN EQUATION

Suppose we have computed V(s) = expected return after
d steps

How can we extend it to compute V4, ,"(s)?
Var"(s) = 2.5 P(s’]s, T1(s)) x [r(s,TT(s),8") + v V{'(s")]

Immediate reward expected future reward

Markov Decision Processes



TREE VISUALIZATION

To compute V(4:)"(so) | -step transition probability P(s*|s)
s, 0.1 03 06

So
0.1
0.3 0.6
So S| Sy
r(so,T(S0),S0) *+ r(so,T(so),s1) + | r(soT(so),s2) + Immediate reward
v x V,(so) v x V,7(s)) v x V,7(s,) expected future reward

Markov Decision Processes @



EXAMPLE + EXERCISE

- - 3 | 0.8516 | 0.9078 | 0.9578
‘ 4 [=1] 2 | 08016 0.7003 | [=1]
‘ J =
1 | 07453 | 0.6953 | 0.6514 | 0.4279
1 ? ) 1 2 3 4
(1,2) 0.04 08
2,1) -0.04 0.l
(1,1) -0.04 0.1

Markov Decision Processes

* Suppose thatV " is as shown
* Compute V(y4+)"(1,1)
* Assume no discounting

0.8 x -0.04
0.1 x -0.04
0.1 x -0.04



COMMENTS ON THE VALUE FUNCTION

A powerful look-ahead concept.
Like searching through an entire search tree for expected success
Game example: chance of winning, expected total score.

Dr. Strange looks ahead

Markov Decision Processes


https://www.youtube.com/watch?v=eGKPfZTXHsc

COMPUTING THE VALUE FUNCTION

Computing the expected utility of a policy for each state
(= value function) is known as policy evaluation

We can keep applying the Bellman equation to compute
state values

Known as value iteration

An instance of dynamic programming

Markov Decision Processes



VALUE ITERATION FOR POLICY
EVALUATION

Input: MDP, policy 11, depth d
VT(s) := 0 for all s
Fori=1|tod

For all s do
VTi(s) = 2o P(s’[s, T1(s)) x [r(s, T(s),s") + v V()]

End for
Return V7™



FINDING AN OPTIMAL POLICY:
VALUE ITERATION



OPTIMAL POLICIES

As always our goal is to find an agent that maximizes expected utility.
Want a policy with maximum value

A policy % is optimal if for any other policy and for all states s
V™(s) 2 V7(s)

The value of the optimal policy is written as V'(s).

A Crash Course in Reinforcement Learning



OPTIMAL POLICIES: EXAMPLE

> | | > > | | >
N NERE ) =
3 - -
=== N
0 ‘ = r < —1.6497 —0.7311 < r < —0.4526
- Em FH]=
1 ‘ = =
} == |4 |~ |=
1 : V=[=1] [FHHFD
—0.0274 <r <0 r>0
(a) (b)
Figure 17.2 (a) The optimal policies for the stochastic environment with = — 0.04 for

transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of 7.

Markov Decision Processes




OPTIMAL VALUE FUNCTION: EXAMPLE

Figure 17.3 The utilities of the states in the 4 x 3 world with y=1 and r= — 0.04 for

0.8516 | 0.9078 | 0.9578

0.8016 0.7003 | [ 1]

0.7453 | 0.6953 | 0.6514 | 0.4279
1 2 3 4

transitions to nonterminal states.

Markov Decision Processes




EXERCISE

3 | | |
2| A b | =
1| A | - B N

1 2 3 4

Given the value function shown,
what is the best move at

« (L)

* (2,3)?

Markov Decision Processes

0.8516 | 0.9078 | 0.9578

0.8016 0.7003 | [ 1]

0.7453 | 0.6953 | 0.6514 | 0.4279
1 2 3 4




FROM VALUE TO POLICY

It is easy to extract a policy from a value function:
At each state, choose an action that maximizes expected future
return
(s) = argmax, ) ¢ P(s’[s,a) x [r(s,a,s’) + yV(s')]
= argmax, Q7(s,a)
Q*(s,a) is known as the action-value function

It represents the expected total return if we choose action a in state s

Markov Decision Processes



VALUE ITERATION: OPTIMAL VALUE FUNCTION

Input: MDP pelieyH;-depth d
Vi(s) := 0 forall s
Fori=1ltod

For all s do
Vi(s) = max, Y ¢ P(s'[s, a) x [r(s,a,s’) + yV(s’)]

End for
Return V"




EXTENSION TO INFINITE HORIZON

It is often useful to let the process run to any depth
MDP may run forever (“neverending learning”)

Even if each trajectory is guaranteed to be finite, we may not know a definite upper bound
in advance (termination uncertainty)

Even if we know an upper bound in advance, it can introduce undesirable complications

E.g. every video game ends within 10 hours but at the beginning players don’t think about
the end

Typically the value function changes very little at a modest depth (e.g.d = |3 for the NHL)

Markov Decision Processes



VALUE ITERATION: INFINITE HORIZON

Input: MDP, peliey-H,depth-d
Vi(s) := 0 forall s
Repeat until convergence

For all s do
V¥(s) = max, > ¢ P(s’|s,a) x [r(s,a,s’) + yV"(s')]

ReturnV*




FINDING AN OPTIMAL POLICY:
POLICY ITERATION



IMPROVING POLICIES

Ultimately we want to find an optimal policy 1T*
We can find an optimal value function V* and then extract an optimal policy.

But value iteration for optimal V* is expensive because for every iteration
and every state, we need to maximize over all possible actions a.

Value iteration for fixed policy 1T is much faster because need to consider
only the selected action TI(s).

Can we get the best of both worlds?

Yes. The basic idea: start with initial policy, then improve it.

Markov Decision Processes



POLICY ITERATION

Input: MDP
T(s) := random action for all s
Repeat until convergence
Policy evaluation: Compute V™ using value iteration

Update policy 1T via
Ti(s) = argmax, ) ¢ P(s’[s,a) x [r(s,a,s’) + yV"(s")]

Return 11

Markov Decision Processes



REINFORCEMENT LEARNING



ADDING LEARNING TO MDPS

If not all aspects of an MDP are known, an agent can try to learn them from observations.

Typical Reinforcement Learning setup:

observation action

Possible States Reward function Optimal Policy

Possible Transition Probabilities  Value Function
Observations

Possible Actions

Markov Decision Processes




LEARNING VALUE FUNCTIONS

learning

Data

Transition Probabilities

Reward Function

Action

dynamic
programming

Value Function
Policy iteration

* Can estimate rewards and transition probabilities using event counts
* Like maximum likelihood for Bayesian networks (later)
* Special RL challenge: need to act while learning about the environment

Markov Decision Processes



EXPLORATION VS. EXPLOITATION

An agent needs to both
Select actions that seem optimal to keep high rewards
“exploit” its current knowledge
Select new actions to gather enough data to estimate a value function
“explore” the state space
A simple approach is €-greedy
With probability €, select a random action (e.g. € =10% of the time)
With probability |-, select an action that is optimal according to the current value function

Simple but often effective

Markov Decision Processes @
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EXAMPLE: ALPHA* GAMES

data generated by self-play
Neural net outputs 2 quantities
V(s), the win rate from a position
P(als): vector of move probabilities
more promising moves should have higher probability
Like node ordering in tree search
To play, performs a (Monte Carlo) tree search using the neural net output

Watch the alphago movie

Markov Decision Processes


https://www.netflix.com/search?q=alphago&jbv=80190844&jbp=0&jbr=0

ICE HOCKEY EXAMPLES

I've done a lot of work applying RL to ice hockey

Using millions of events from NHL games

Markov Decision Processes



PIPELINE

Computer Vision Techniques:
Video tracking

Play-by-play Dataset

%

e

= ﬁ/ = Large-scale Machine Learning
PRI

==k .

Markov Decision Processes @



Defending zone

Neutral zone

Attacking zone

>
ip = e pas? CV = 76%
MP = ev : — 0, =
b impact = 5% 0
CV = 66%
D=
MP = ev
0 > PR =4
—> CV =73%

reception
impact = 5%

'50—>

Direction of play
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Spatial Projection

Value for the action “shot” action over the rink.

Q_home action:shot-history:[] with DT-LSTM

0.80

0.75

0.70

YAdjcoord

0.65

0.60

(1N

XAdjcoord

0.55
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Q(s, )

Value Ticker: Temporal Projection
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THE IMPACT OF AN ACTION
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PLAYER RANKING

Rank players by the total impact of all their actions

Name GIM  Assists  Goals Points Team Salary
Taylor Hall 96.40 39 26 65 EDM  $6,000,000
Joe Pavelski 94.56 40 38 78 SIS $6,000,000

Johnny Gaudreau  94.51 48 30 78 CGY $925,000
Anze Kopitar 94.10 49 25 74 LAK  $7,700,000
Erik Karlsson 92.41 66 16 82 OTT  $7,000,000

Patrice Bergeron 92.06 36 32 68 BOS $8,750,000

Mark Scheifele 90.67 32 29 61 WPG $832.500
Sidney Crosby 90.21 49 36 85 PIT  $12,000,000
Claude Giroux 89.64 45 22 67 PHI $9,000,000
Dustin Byfuglien 89.46 34 19 53 WPG  $6,000,000
Jamie Benn 88.38 48 41 89 DAL  $5,750,000
Patrick Kane 87.81 60 46 106 CHI  $13,800,000
Mark Stone 86.42 38 23 61 OTT  $2,250,000
Blake Wheeler 85.83 52 26 78 WPG  $5,800,000
Tyler Toffoli 83.25 27 31 58 DAL  $2,600,000
Charlie Coyle 81.50 21 21 42 MIN  $1,900,000
Tyson Barrie 81.46 36 13 49 COL  $3,200,000
Jonathan Toews 80.92 30 28 58 CHI  $13,800,000

Sean Monahan 80.92 36 27 63 CGY $925,000
Vladimir Tarasenko 80.68 34 40 74 STL $8,000,000

Mark Scheifele drew
salaries below what his GIM
rank would suggest.

Later he received a S5M+
contractin 2016-17 season

Markov Decision Processes



SUMMARY

Reinforcement Learning: learning to act
Adds actions and rewards to a temporal Markov model
Inference/Planning: find optimal policy given fully specified MDP
Value iteration: find optimal value function, extract policy
Policy iteration: alternate policy evaluation and policy extraction
Learning problems:

Value function: Estimate the expected cumulative reward given a state for a
given policy/ an optimal policy

Agent discovery: Learn an optimal policy

Markov Decision Processes



