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OUTLINE

• What is Reinforcement Learning?

• Key Definitions

• Key Learning Tasks

• Reinforcement Learning Techniques

• Reinforcement Learning with Neural Nets
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OVERVIEW
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LEARNING TO ACT

• So far: learning to predict

• Now: learn to act
• In engineering: control theory

• Economics, operations research: decision and game theory
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EXAMPLES

• Fly stunt manoeuvres in a helicopter

• Defeat the world champion at Backgammon, Go

• Manage an investment portfolio

• Control a power station

• Make a humanoid robot walk

• Play Starcraft,  Atari games better than humans

• Drive a car

• Play hockey
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https://www.youtube.com/watch?v=cUTMhmVh1qs


A NEW KIND OF LEARNING

• There is no supervisor, only a reward signal

• No labels “wrong choice, right choice”

• Feedback is delayed, not instantaneous

• Time really matters (sequential, non i.i.d data)

• Agent’s actions affect the subsequent data it receives
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RL FRAMEWORK

• At each step t the agent:

• Executes action At
• Receives observation Ot
• Receives scalar reward Rt

• The environment:

• Receives action At
• Emits observation Ot+1

• Emits scalar reward Rt+1

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step
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REMEMBER YOUR PEAS

• Performance, Environment, Actuators, Sensors
• Learning to play video games
• Exercise: What are the PEAS?

• Learn to flip pancakes
• Exercise: What are the PEAS?

• Autonomous Helicopter
• An example of imitation learning: start by observing human actions
• Exercise: What are the PEAS?
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http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=VCdxqn0fcnE


MARKOV DECISION PROCESSES
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MARKOV PROCESS

• Aka Markov Chains
• Think about atomic representation of environment state (Russell and 

Norvig)
• Like state space in problem search
• A Markov process moves from one state to another with a certain 

probability
• Transition probability: P(st+1 = s’|st = s)
• Demo
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http://setosa.io/blog/2014/07/26/markov-chains/index.html


EXAMPLE: STUDENT LIFE
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Lecture 2: Markov Decision Processes

Markov Processes

Markov Chains

Example: Student Markov Chain Episodes

0.5

0.5

0.2
0.8 0.6

0.4

SleepFacebook

Class 2

0.9

0.1

Pub

Class 3 PassClass 1

0.2
0.4

0.4

1.0

Sample episodes for Student Markov
Chain starting from S1 = C1

S1, S2, ..., ST

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub C1 FB FB
FB C1 C2 C3 Pub C2 Sleep

Source: 
David Silver



MARKOV REWARD PROCESS

• Markov Process + 
Reward Rs associated 
with state

• More generally reward 
for transition R(s,s’)

13

Lecture 2: Markov Decision Processes

Markov Reward Processes

MRP

Example: Student MRP

R = +10
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0.8 0.6

0.4

SleepFacebook
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0.9

0.1

R = +1

R = -1 R = 0
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Class 3 PassClass 1
R = -2 R = -2 R = -2
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MARKOV DECISION PROCESSES

• Markov decision process (MDP) = Markov reward process + actions 

• Transition probabilities, rewards depend on actions

• Markov game = MDP with actions, rewards for > 1 agent
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EXAMPLE: STUDENT MARKOV DECISION 
PROCESS

Lecture 2: Markov Decision Processes

Markov Decision Processes

MDP

Example: Student MDP

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0
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HOCKEY 
EXAMPLE
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What are the states?
What are the rewards?



MARKOV CHAINS

Theory and Algorithms
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EXERCISES

• Consider a Markov chain like the one shown in this demo

• What is the probability of the sequence AABB?

• What is the longest possible sequence of observations?
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http://setosa.io/blog/2014/07/26/markov-chains/index.html


MULTI-STEP TRANSITIONS

• What is the chance that if we start in state s we will reach state 
s’ after a fixed number of n steps?
• Think: from initial state, what is the chance of reaching a goal state in 

n steps?

• E.g. in this demo, what is the chance that we reach state 3 from 
0 after 3 steps?

• What we want is a step-d transition matrix – how can we 
compute this efficiently? 

• Notation: Pd(s’|s)
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http://markov.yoriz.co.uk/


DYNAMIC PROGRAMMING

• Think Iterative Deepening: Build up transition matrices for 
1, 2,…,d-1, d steps.

• For d = 1: Use given transition matrix P(s’|s) = P1(s’|s)

• For d+1: Pd+1(s’|s)=∑s* P(s’|s*) x Pd(s’|s*)
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TREE VISUALIZATION
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s0

s1 s2s0

0.1
0.3 0.6 Uses 1-step transition probability P(s*|s0)

s1

0.2+
0.5+

0.3+
Uses (d-1)-step transition probability P(d-1)(s1|s*)

To compute Pd(s1|s0) s0 s1 s2
s0 0.1 0.3 0.6



INFINITE CHAINS

• What if we let the number of steps (depth) d go to infinity?

• It can be shown that under certain conditions on the chain, 
there is limit transition probability matrix P∞(s’|s)

• This is the stationary transition matrix
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PERFORMANCE METRIC FOR MDPS

Policies and Returns
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FACTORED STATES

• In practice, RL uses a factored state representation
(see Russell and Norvig).

ØThe state is defined by a list of values for a set of variables.

• E.g. in hockey, can include score, game time, locations of 
players, location of puck

• If we  have only 2 integer variables x and y, we can visualize 
states in a grid world
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https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


GRID WORLD EXAMPLE

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.
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POLICIES

• A deterministic policy π is a function that maps states to actions 
π(s)=a

• i.e. tells us how to act

• Can also be probabilistic  π(a|s)

• Can be implemented using neural nets.

• Represents an agent function

• grid world demo
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https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


EXAMPLE
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.



OPTIMAL POLICIES

• A policy represents an agent (function)

• As always we want an agent/policy that maximizes expected 
utility

• How to define the expected utility of a policy in an MDP?

• Basic idea: when we execute the policy in an environment, we 
get a sequence of rewards. 

• Utility = (discounted) sum of rewards
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RETURNS AND DISCOUNTING

• Basic Idea:  When the agent executes a policy, they get a sequence of rewards r0,r1, rd
• The return of a trajectory is the total sum of rewards.

• Typically rewards are weighted by a discount factor γ between 0 and 1.

• Payoff = Return = r0+γr1+γ2rd
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EXAMPLE + EXERCISE
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

State Action Reward State Action State Reward Probability Return

(1,1) Up -0.04 (1,2) Up (1,3) -0.04 0.8x0.8 -0.04-0.5x0.04

(1,1) Up -0.04 (1,2) Up (1,2) -0.04 ? -0.04-0.5x0.04

(1,1) Up -0.04 (1,2) Right (1,2) -0.04 ? -0.04-0.5x0.04

γ =0.5
What if γ =1?



MDPS VS SEARCH

• Solving an MDP is like planning in problem search
• Input: states, transition probabilities, reward function
• Output: optimal policy
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Problem Search Markov Decision Process

State State

Deterministic Transitions 
NextState(state,action)

Non-deterministic Transition Probabilities 
P(state’|state,action)

Edge Cost cost(state,state’) Transition Reward R(state,action,state’)

Sum of Edge Costs Sum of Rewards = Return

Reach Goal State with minimum total cost Maximize Sum of Rewards = Return

Plan = sequence of actions Policy: select action in each state



WHY DISCOUNT?

• Reward in Markov decision processes are discounted. Why?
• If the reward is financial, immediate rewards may earn more interest than delayed rewards
• Mathematically convenient to discount rewards for infinite trajectories (more below)
• Avoids infinite returns in cyclic Markov processes (like cyclic search)
• Uncertainty about the future may not be fully represented
• There may be a small probability that process ends

• Animal/human behaviour shows preference for immediate reward
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EXPECTED UTILITY FOR POLICIES

• Intuition: expected return (total reward) of policy π from state s
= return from all possible trajectories, weighted by the probability of a 
trajectory given the policy
= ∑ trajectories τ p(τ|s,π) x return(τ)

• We write Vπd(s) for the expected return of policy π from state s after d
steps

• Like depth d

• In RL, the term “value function” is used instead of “expected utility”
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1-STEP EXPECTED UTILITY

• How can we compute the values V1
π(s) = expected return 

after 1 step?

• Directly from MDP:
V1
π(s)=∑s’ p(s’|π(s),s) x r(s,a,s’)

34

Probability of next state given 
current state and policy action

Reward associated with transition



TREE VISUALIZATION
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s0

s1 s2s0

0.1
0.3 0.6 Uses 1-step transition probability P(s*|s0)

To compute V1
π(s0) s0 s1 s2

s0 0.1 0.3 0.6

r(s0,π(s0),s0) r(s0,π(s0),s1) r(s0,π(s0),s2)



EXAMPLE + EXERCISE
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

Next 
State

Reward Probability XReward Sum = -
0.04

(1,2) -0.04 0.8 0.8 x -0.04

(2,1) -0.04 0.1 0.1 x -0.04

(1,1) -0.04 0.1 0.1 x -0.04

• Compute V1
π(1,1)

• Exercise: what if π(1,1)=Right?
• So which move is better Up  or Right?



D-STEP EXPECTED UTLITY: 
THE BELLMAN EQUATION

• Suppose we have computed Vd
π(s) = expected return after 

d steps

• How can we extend it to compute Vd+1
π(s)?

• Vd+1
π(s) = ∑s’ P(s’|s, π(s)) x [r(s, π(s),s’) + γVd

π(s’)]

37

Immediate reward expected future reward



TREE VISUALIZATION
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s0

s1 s2s0

0.1
0.3 0.6

1-step transition probability P(s*|s0)
To compute V(d+1)π(s0) s0 s1 s2

s0 0.1 0.3 0.6

r(s0,π(s0),s0) + r(s0,π(s0),s1) + r(s0,π(s0),s2) +

γ x Vnπ(s0) γ x Vnπ(s1) γ x Vnπ(s2)

Immediate reward

expected future reward



EXAMPLE + EXERCISE
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

Next 
State

Reward Probability XReward Future 
Reward

Sum = ?

(1,2) -0.04 0.8 0.8 x -0.04

(2,1) -0.04 0.1 0.1 x -0.04

(1,1) -0.04 0.1 0.1 x -0.04
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

• Suppose that Vd
π is as shown

• Compute V(d+1)π(1,1)
• Assume no discounting



COMMENTS ON THE VALUE FUNCTION

• A powerful look-ahead concept.

• Like searching through an entire search tree for expected success

• Game example: chance of winning, expected total score.

• Dr. Strange looks ahead

40

https://www.youtube.com/watch?v=eGKPfZTXHsc


COMPUTING THE VALUE FUNCTION

• Computing the expected utility of a policy for each state 
(= value function)  is known as policy evaluation

• We can keep applying the Bellman equation to compute 
state values

• Known as value iteration

• An instance of dynamic programming
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VALUE ITERATION FOR POLICY 
EVALUATION

• Input: MDP, policy π, depth d
• Vπ(s) := 0  for all s
• For i = 1 to d
• For all s do 

Vπ(s) = ∑s’ P(s’|s, π(s)) x [r(s, π(s),s’) + γVπ(s’)]

• End for
• Return Vπ
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FINDING AN OPTIMAL POLICY: 
VALUE ITERATION
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OPTIMAL POLICIES

• As always our goal is to find an agent that maximizes expected utility.

ØWant a policy with maximum value

• A policy π* is optimal if for any other policy and for all states s
Vπ*(s) ≥ Vπ(s)

• The value of the optimal policy is written as V*(s).
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OPTIMAL POLICIES: EXAMPLE
127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.
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OPTIMAL VALUE FUNCTION: EXAMPLE
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.
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EXERCISE
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.
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Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

• Given the value function shown, 
what is the best move at
• (1,1)
• (2,3)?



FROM VALUE TO POLICY

• It is easy to extract a policy from a value function:
• At each state, choose an action that maximizes expected future 

return
• π*(s) = argmax a ∑s’ P(s’|s, a) x [r(s, a,s’) + γV(s’)]

= argmax a Q*(s,a)
• Q*(s,a) is known as the action-value function
• It represents the expected total return if we choose action a in state s
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VALUE ITERATION: OPTIMAL VALUE FUNCTION

• Input: MDP, policy π, depth d
• V*(s) := 0  for all s
• For i = 1 to d
• For all s do 

V*(s) = max a∑s’ P(s’|s, a) x [r(s, a,s’) + γV*(s’)]

• End for
• Return V*
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EXTENSION TO INFINITE HORIZON

• It is often useful to let the process run to any depth

• MDP may run forever (“neverending learning”)

• Even if each trajectory is guaranteed to be finite, we may not know a definite upper bound 
in advance (termination uncertainty)

• Even if we know an upper bound in advance, it can introduce undesirable complications

• E.g. every video game ends within 10 hours but at the beginning players don’t think about 
the end

• Typically the value function changes very little at a modest depth (e.g. d = 13 for the NHL)
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VALUE ITERATION: INFINITE HORIZON

• Input: MDP, policy π, depth d

• V*(s) := 0  for all s

• Repeat until convergence

• For all s do 
V*(s) = max a ∑s’ P(s’|s, a) x [r(s, a,s’) + γVπ(s’)]

• Return V*
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FINDING AN OPTIMAL POLICY: 
POLICY ITERATION

52



IMPROVING POLICIES

• Ultimately we want to find an optimal policy π*

• We can find an optimal value function V* and then extract an optimal policy.

• But value iteration for optimal V* is expensive because for every iteration 
and every state, we need to maximize over all possible actions a. 

• Value iteration for fixed policy π is much faster because need to consider 
only the selected action π(s).

• Can we get the best of both worlds?

• Yes. The basic idea: start with initial policy, then improve it.
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POLICY ITERATION

54

• Input: MDP

• π(s) := random action for all s

• Repeat until convergence

1. Policy evaluation: Compute Vπ using value iteration

2. Update policy π via 
π(s) = argmax a ∑s’ P(s’|s, a) x [r(s, a,s’) + γVπ(s’)]

• Return π



REINFORCEMENT LEARNING
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ADDING LEARNING TO MDPS

• If not all aspects of an MDP are known, an agent can try to learn them from observations. 

• Typical Reinforcement Learning setup:
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step

Known Unknown Learning Target

Possible States Reward function Optimal Policy

Possible 
Observations

Transition Probabilities Value Function

Possible Actions



LEARNING VALUE FUNCTIONS

Transition Probabilities
Reward Function

Data
Value Function
Policy iteration

dynamic 
programming

57

learning

• Can estimate rewards and transition probabilities using event counts
• Like maximum likelihood for Bayesian networks (later)
• Special RL challenge: need to act while learning about the environment 

Action



EXPLORATION VS. EXPLOITATION

• An agent needs to both

• Select actions that seem optimal to keep high rewards

• “exploit” its current knowledge

• Select new actions to gather enough data to estimate a value function

• “explore” the state space

• A simple approach is ε-greedy

• With probability ε, select a random action (e.g. ε =10% of the time)

• With probability 1-ε, select an action that is optimal according to the current value function

• Simple but often effective

58



EXAMPLES
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EXAMPLE: ALPHA* GAMES

• data generated by self-play

• Neural net outputs 2 quantities

1. V(s), the win rate from a position

2. P(a|s): vector of move probabilities

• more promising moves should have higher probability

• Like node ordering in tree search

• To play, performs a (Monte Carlo) tree search using the neural net output

• Watch the alphago movie
60

https://www.netflix.com/search?q=alphago&jbv=80190844&jbp=0&jbr=0


ICE HOCKEY EXAMPLES

• I’ve done a lot of work applying RL to ice hockey

• Using millions of events from NHL games
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PIPELINE

Markov Decision Processes

• Computer Vision Techniques: 
Video tracking

• Play-by-play Dataset

• Large-scale Machine Learning
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EXAMPLE STATE TRAJECTORY ON RINK
50

0

-50

-100 0 100



Spatial Projection
Value for the action “shot” action over the rink.

64



Value Ticker: Temporal Projection

Q
(s

,a
)

Game Time
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expected reward 
after action
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THE IMPACT OF AN ACTION

expected reward 
before action

impact(st ,at ) =Q(st ,at )−Q(st−1,at−1)
Q

(s
,a

)

Game Time



PLAYER RANKING
Rank players by the total impact of all their actions

• Mark Scheifele drew 
salaries belowwhat his GIM 
rank would suggest. 

• Later he received a $5M+  
contract in 2016-17 season
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SUMMARY

• Reinforcement Learning: learning to act
• Adds actions and rewards to a temporal Markov model

• Inference/Planning: find optimal policy given fully specified MDP
• Value iteration: find optimal value function, extract policy

• Policy iteration: alternate policy evaluation and policy extraction

• Learning problems:
• Value function: Estimate the expected cumulative reward given a state for a 

given policy/ an optimal policy

• Agent discovery: Learn an optimal policy
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