
LEARNING TO ACT

Oliver Schulte

Simon Fraser University

OUTLINE

• What is Reinforcement Learning?

• Key Definitions

• Key Learning Tasks

• Reinforcement Learning Techniques

• Reinforcement Learning with Neural Nets

2

OVERVIEW

3

LEARNING TO ACT

• So far: learning to predict

• Now: learn to act
• In engineering: control theory

• Economics, operations research: decision and game theory

4

EXAMPLES

• Fly stunt manoeuvres in a helicopter

• Defeat the world champion at Backgammon, Go

• Manage an investment portfolio

• Control a power station

• Make a humanoid robot walk

• Play Starcraft, Atari games better than humans

• Drive a car

• Play hockey

5

https://www.youtube.com/watch?v=cUTMhmVh1qs

A NEW KIND OF LEARNING

• There is no supervisor, only a reward signal

• No labels “wrong choice, right choice”

• Feedback is delayed, not instantaneous

• Time really matters (sequential, non i.i.d data)

• Agent’s actions affect the subsequent data it receives

6

RL FRAMEWORK

• At each step t the agent:

• Executes action At
• Receives observation Ot
• Receives scalar reward Rt

• The environment:

• Receives action At
• Emits observation Ot+1

• Emits scalar reward Rt+1

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step

7

REMEMBER YOUR PEAS

• Performance, Environment, Actuators, Sensors
• Learning to play video games
• Exercise: What are the PEAS?

• Learn to flip pancakes
• Exercise: What are the PEAS?

• Autonomous Helicopter
• An example of imitation learning: start by observing human actions
• Exercise: What are the PEAS?

9

http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=VCdxqn0fcnE

MARKOV DECISION PROCESSES

10

MARKOV PROCESS

• Aka Markov Chains
• Think about atomic representation of environment state (Russell and

Norvig)
• Like state space in problem search
• A Markov process moves from one state to another with a certain

probability
• Transition probability: P(st+1 = s’|st = s)
• Demo

11

http://setosa.io/blog/2014/07/26/markov-chains/index.html

EXAMPLE: STUDENT LIFE

12

Lecture 2: Markov Decision Processes

Markov Processes

Markov Chains

Example: Student Markov Chain Episodes

0.5

0.5

0.2
0.8 0.6

0.4

SleepFacebook

Class 2

0.9

0.1

Pub

Class 3 PassClass 1

0.2
0.4

0.4

1.0

Sample episodes for Student Markov
Chain starting from S1 = C1

S1, S2, ..., ST

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub C1 FB FB
FB C1 C2 C3 Pub C2 Sleep

Source:
David Silver

MARKOV REWARD PROCESS

• Markov Process +
Reward Rs associated
with state

• More generally reward
for transition R(s,s’)

13

Lecture 2: Markov Decision Processes

Markov Reward Processes

MRP

Example: Student MRP

R = +10

0.5

0.5

0.2

0.8 0.6

0.4

SleepFacebook

Class 2

0.9

0.1

R = +1

R = -1 R = 0

Pub

Class 3 PassClass 1
R = -2 R = -2 R = -2

0.2
0.4

0.4

1.0

MARKOV DECISION PROCESSES

• Markov decision process (MDP) = Markov reward process + actions

• Transition probabilities, rewards depend on actions

• Markov game = MDP with actions, rewards for > 1 agent

14

EXAMPLE: STUDENT MARKOV DECISION
PROCESS

Lecture 2: Markov Decision Processes

Markov Decision Processes

MDP

Example: Student MDP

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

15

HOCKEY
EXAMPLE

16

What are the states?
What are the rewards?

MARKOV CHAINS

Theory and Algorithms

17

EXERCISES

• Consider a Markov chain like the one shown in this demo

• What is the probability of the sequence AABB?

• What is the longest possible sequence of observations?

18

http://setosa.io/blog/2014/07/26/markov-chains/index.html

MULTI-STEP TRANSITIONS

• What is the chance that if we start in state s we will reach state
s’ after a fixed number of n steps?
• Think: from initial state, what is the chance of reaching a goal state in

n steps?

• E.g. in this demo, what is the chance that we reach state 3 from
0 after 3 steps?

• What we want is a step-d transition matrix – how can we
compute this efficiently?

• Notation: Pd(s’|s)

19

http://markov.yoriz.co.uk/

DYNAMIC PROGRAMMING

• Think Iterative Deepening: Build up transition matrices for
1, 2,…,d-1, d steps.

• For d = 1: Use given transition matrix P(s’|s) = P1(s’|s)

• For d+1: Pd+1(s’|s)=∑s* P(s’|s*) x Pd(s’|s*)

20

TREE VISUALIZATION

21

s0

s1 s2s0

0.1
0.3 0.6 Uses 1-step transition probability P(s*|s0)

s1

0.2+
0.5+

0.3+
Uses (d-1)-step transition probability P(d-1)(s1|s*)

To compute Pd(s1|s0) s0 s1 s2
s0 0.1 0.3 0.6

INFINITE CHAINS

• What if we let the number of steps (depth) d go to infinity?

• It can be shown that under certain conditions on the chain,
there is limit transition probability matrix P∞(s’|s)

• This is the stationary transition matrix

22

PERFORMANCE METRIC FOR MDPS

Policies and Returns

23

FACTORED STATES

• In practice, RL uses a factored state representation
(see Russell and Norvig).

ØThe state is defined by a list of values for a set of variables.

• E.g. in hockey, can include score, game time, locations of
players, location of puck

• If we have only 2 integer variables x and y, we can visualize
states in a grid world

24

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

GRID WORLD EXAMPLE

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

25

POLICIES

• A deterministic policy π is a function that maps states to actions
π(s)=a

• i.e. tells us how to act

• Can also be probabilistic π(a|s)

• Can be implemented using neural nets.

• Represents an agent function

• grid world demo

26

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

EXAMPLE

27

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

OPTIMAL POLICIES

• A policy represents an agent (function)

• As always we want an agent/policy that maximizes expected
utility

• How to define the expected utility of a policy in an MDP?

• Basic idea: when we execute the policy in an environment, we
get a sequence of rewards.

• Utility = (discounted) sum of rewards

28

RETURNS AND DISCOUNTING

• Basic Idea: When the agent executes a policy, they get a sequence of rewards r0,r1, rd
• The return of a trajectory is the total sum of rewards.

• Typically rewards are weighted by a discount factor γ between 0 and 1.

• Payoff = Return = r0+γr1+γ2rd

29

EXAMPLE + EXERCISE

30

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

State Action Reward State Action State Reward Probability Return

(1,1) Up -0.04 (1,2) Up (1,3) -0.04 0.8x0.8 -0.04-0.5x0.04

(1,1) Up -0.04 (1,2) Up (1,2) -0.04 ? -0.04-0.5x0.04

(1,1) Up -0.04 (1,2) Right (1,2) -0.04 ? -0.04-0.5x0.04

γ =0.5
What if γ =1?

MDPS VS SEARCH

• Solving an MDP is like planning in problem search
• Input: states, transition probabilities, reward function
• Output: optimal policy

31

Problem Search Markov Decision Process

State State

Deterministic Transitions
NextState(state,action)

Non-deterministic Transition Probabilities
P(state’|state,action)

Edge Cost cost(state,state’) Transition Reward R(state,action,state’)

Sum of Edge Costs Sum of Rewards = Return

Reach Goal State with minimum total cost Maximize Sum of Rewards = Return

Plan = sequence of actions Policy: select action in each state

WHY DISCOUNT?

• Reward in Markov decision processes are discounted. Why?
• If the reward is financial, immediate rewards may earn more interest than delayed rewards
• Mathematically convenient to discount rewards for infinite trajectories (more below)
• Avoids infinite returns in cyclic Markov processes (like cyclic search)
• Uncertainty about the future may not be fully represented
• There may be a small probability that process ends

• Animal/human behaviour shows preference for immediate reward

32

EXPECTED UTILITY FOR POLICIES

• Intuition: expected return (total reward) of policy π from state s
= return from all possible trajectories, weighted by the probability of a
trajectory given the policy
= ∑ trajectories τ p(τ|s,π) x return(τ)

• We write Vπd(s) for the expected return of policy π from state s after d
steps

• Like depth d

• In RL, the term “value function” is used instead of “expected utility”

33

1-STEP EXPECTED UTILITY

• How can we compute the values V1
π(s) = expected return

after 1 step?

• Directly from MDP:
V1
π(s)=∑s’ p(s’|π(s),s) x r(s,a,s’)

34

Probability of next state given
current state and policy action

Reward associated with transition

TREE VISUALIZATION

35

s0

s1 s2s0

0.1
0.3 0.6 Uses 1-step transition probability P(s*|s0)

To compute V1
π(s0) s0 s1 s2

s0 0.1 0.3 0.6

r(s0,π(s0),s0) r(s0,π(s0),s1) r(s0,π(s0),s2)

EXAMPLE + EXERCISE

36

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

Next
State

Reward Probability XReward Sum = -
0.04

(1,2) -0.04 0.8 0.8 x -0.04

(2,1) -0.04 0.1 0.1 x -0.04

(1,1) -0.04 0.1 0.1 x -0.04

• Compute V1
π(1,1)

• Exercise: what if π(1,1)=Right?
• So which move is better Up or Right?

D-STEP EXPECTED UTLITY:
THE BELLMAN EQUATION

• Suppose we have computed Vd
π(s) = expected return after

d steps

• How can we extend it to compute Vd+1
π(s)?

• Vd+1
π(s) = ∑s’ P(s’|s, π(s)) x [r(s, π(s),s’) + γVd

π(s’)]

37

Immediate reward expected future reward

TREE VISUALIZATION

38

s0

s1 s2s0

0.1
0.3 0.6

1-step transition probability P(s*|s0)
To compute V(d+1)π(s0) s0 s1 s2

s0 0.1 0.3 0.6

r(s0,π(s0),s0) + r(s0,π(s0),s1) + r(s0,π(s0),s2) +

γ x Vnπ(s0) γ x Vnπ(s1) γ x Vnπ(s2)

Immediate reward

expected future reward

EXAMPLE + EXERCISE

39

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

Next
State

Reward Probability XReward Future
Reward

Sum = ?

(1,2) -0.04 0.8 0.8 x -0.04

(2,1) -0.04 0.1 0.1 x -0.04

(1,1) -0.04 0.1 0.1 x -0.04

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

• Suppose that Vd
π is as shown

• Compute V(d+1)π(1,1)
• Assume no discounting

COMMENTS ON THE VALUE FUNCTION

• A powerful look-ahead concept.

• Like searching through an entire search tree for expected success

• Game example: chance of winning, expected total score.

• Dr. Strange looks ahead

40

https://www.youtube.com/watch?v=eGKPfZTXHsc

COMPUTING THE VALUE FUNCTION

• Computing the expected utility of a policy for each state
(= value function) is known as policy evaluation

• We can keep applying the Bellman equation to compute
state values

• Known as value iteration

• An instance of dynamic programming

41

VALUE ITERATION FOR POLICY
EVALUATION

• Input: MDP, policy π, depth d
• Vπ(s) := 0 for all s
• For i = 1 to d
• For all s do

Vπ(s) = ∑s’ P(s’|s, π(s)) x [r(s, π(s),s’) + γVπ(s’)]

• End for
• Return Vπ

42

FINDING AN OPTIMAL POLICY:
VALUE ITERATION

43

OPTIMAL POLICIES

• As always our goal is to find an agent that maximizes expected utility.

ØWant a policy with maximum value

• A policy π* is optimal if for any other policy and for all states s
Vπ*(s) ≥ Vπ(s)

• The value of the optimal policy is written as V*(s).

44

OPTIMAL POLICIES: EXAMPLE
127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

45

OPTIMAL VALUE FUNCTION: EXAMPLE

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

46

EXERCISE

47

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

• Given the value function shown,
what is the best move at
• (1,1)
• (2,3)?

FROM VALUE TO POLICY

• It is easy to extract a policy from a value function:
• At each state, choose an action that maximizes expected future

return
• π*(s) = argmax a ∑s’ P(s’|s, a) x [r(s, a,s’) + γV(s’)]

= argmax a Q*(s,a)
• Q*(s,a) is known as the action-value function
• It represents the expected total return if we choose action a in state s

48

VALUE ITERATION: OPTIMAL VALUE FUNCTION

• Input: MDP, policy π, depth d
• V*(s) := 0 for all s
• For i = 1 to d
• For all s do

V*(s) = max a∑s’ P(s’|s, a) x [r(s, a,s’) + γV*(s’)]

• End for
• Return V*

49

EXTENSION TO INFINITE HORIZON

• It is often useful to let the process run to any depth

• MDP may run forever (“neverending learning”)

• Even if each trajectory is guaranteed to be finite, we may not know a definite upper bound
in advance (termination uncertainty)

• Even if we know an upper bound in advance, it can introduce undesirable complications

• E.g. every video game ends within 10 hours but at the beginning players don’t think about
the end

• Typically the value function changes very little at a modest depth (e.g. d = 13 for the NHL)

50

VALUE ITERATION: INFINITE HORIZON

• Input: MDP, policy π, depth d

• V*(s) := 0 for all s

• Repeat until convergence

• For all s do
V*(s) = max a ∑s’ P(s’|s, a) x [r(s, a,s’) + γVπ(s’)]

• Return V*

51

FINDING AN OPTIMAL POLICY:
POLICY ITERATION

52

IMPROVING POLICIES

• Ultimately we want to find an optimal policy π*

• We can find an optimal value function V* and then extract an optimal policy.

• But value iteration for optimal V* is expensive because for every iteration
and every state, we need to maximize over all possible actions a.

• Value iteration for fixed policy π is much faster because need to consider
only the selected action π(s).

• Can we get the best of both worlds?

• Yes. The basic idea: start with initial policy, then improve it.

53

POLICY ITERATION

54

• Input: MDP

• π(s) := random action for all s

• Repeat until convergence

1. Policy evaluation: Compute Vπ using value iteration

2. Update policy π via
π(s) = argmax a ∑s’ P(s’|s, a) x [r(s, a,s’) + γVπ(s’)]

• Return π

REINFORCEMENT LEARNING

55

ADDING LEARNING TO MDPS

• If not all aspects of an MDP are known, an agent can try to learn them from observations.

• Typical Reinforcement Learning setup:

56

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step

Known Unknown Learning Target

Possible States Reward function Optimal Policy

Possible
Observations

Transition Probabilities Value Function

Possible Actions

LEARNING VALUE FUNCTIONS

Transition Probabilities
Reward Function

Data
Value Function
Policy iteration

dynamic
programming

57

learning

• Can estimate rewards and transition probabilities using event counts
• Like maximum likelihood for Bayesian networks (later)
• Special RL challenge: need to act while learning about the environment

Action

EXPLORATION VS. EXPLOITATION

• An agent needs to both

• Select actions that seem optimal to keep high rewards

• “exploit” its current knowledge

• Select new actions to gather enough data to estimate a value function

• “explore” the state space

• A simple approach is ε-greedy

• With probability ε, select a random action (e.g. ε =10% of the time)

• With probability 1-ε, select an action that is optimal according to the current value function

• Simple but often effective

58

EXAMPLES

59

EXAMPLE: ALPHA* GAMES

• data generated by self-play

• Neural net outputs 2 quantities

1. V(s), the win rate from a position

2. P(a|s): vector of move probabilities

• more promising moves should have higher probability

• Like node ordering in tree search

• To play, performs a (Monte Carlo) tree search using the neural net output

• Watch the alphago movie
60

https://www.netflix.com/search?q=alphago&jbv=80190844&jbp=0&jbr=0

ICE HOCKEY EXAMPLES

• I’ve done a lot of work applying RL to ice hockey

• Using millions of events from NHL games

61

PIPELINE

Markov Decision Processes

• Computer Vision Techniques:
Video tracking

• Play-by-play Dataset

• Large-scale Machine Learning

62

63

EXAMPLE STATE TRAJECTORY ON RINK
50

0

-50

-100 0 100

Spatial Projection
Value for the action “shot” action over the rink.

64

Value Ticker: Temporal Projection

Q
(s

,a
)

Game Time
65

expected reward
after action

66

THE IMPACT OF AN ACTION

expected reward
before action

impact(st ,at) =Q(st ,at)−Q(st−1,at−1)
Q

(s
,a

)

Game Time

PLAYER RANKING
Rank players by the total impact of all their actions

• Mark Scheifele drew
salaries belowwhat his GIM
rank would suggest.

• Later he received a $5M+
contract in 2016-17 season

67

SUMMARY

• Reinforcement Learning: learning to act
• Adds actions and rewards to a temporal Markov model

• Inference/Planning: find optimal policy given fully specified MDP
• Value iteration: find optimal value function, extract policy

• Policy iteration: alternate policy evaluation and policy extraction

• Learning problems:
• Value function: Estimate the expected cumulative reward given a state for a

given policy/ an optimal policy

• Agent discovery: Learn an optimal policy

68

