
C H A P T E R  3

O l i v e r  S c h u l t e

S i m o n  F r a s e r  U n i v e r s i t y

CMPT 310 - Blind Search

1

Search and Sequential Action



Outline

CMPT 310 - Blind Search

2

� Problem formulation: representing sequential 
problems.

� Example problems.

� Planning for solving sequential problems without 
uncertainty.

� Basic search algorithms



Environment Type Discussed In this Lecture

� Static Environment

� Atomic States
(not factored or 
structured)

CMPT 310 - Blind Search

3

Fully 
Observable

Deterministic

Sequential

yes

yes

Discrete Discrete 
yes

Planning, 
heuristic 
search

yes

Control, 
cybernetics

no

no

Continuous Function 
Optimization

Constraint 
Satisfaction

no

yes



Search Problems

CMPT 310 - Blind Search

4



Choice in a Deterministic Known Environment

• Without uncertainty, choice is trivial in principle: 
choose what you know to be the best option.

• Trivial if the problem is represented in a look-up 
table.

CMPT 310 - Blind Search

5

Option Value

Chocolate 10

Wine 20

Book 15



Computational Choice Under Certainty

� But choice can be computationally hard if the 
problem information is represented differently.

� Options may be structured and the best option 
needs to be constructed.
¡ E.g., an option may consist of a path, sequence of actions, plan, 

or strategy.

� The value of options may be given implicitly rather 
than explicitly.
¡ E.g., cost of paths need to be computed from map.

CMPT 310 - Blind Search

6



Sequential Action Example

CMPT 310 - Blind Search

7

� Deterministic, fully observable à single-state problem
¡ Agent knows exactly which state it will be in; solution is a 

sequence
¡ Vacuum world à everything observed
¡ Romania à The full map is observed

� Single-state:  Start in #5. Solution??
¡ [Right, Suck]



Example: Romania

CMPT 310 - Blind Search

8

� On holiday in Romania; currently in Arad.
� Flight leaves tomorrow from Buchares

1. Formulate goal: be in Bucharest
2. Formulate problem:

÷ states: various cities
÷ actions: drive between cities

� Find solution: 
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest



Example: Romania

CMPT 310 - Blind Search

9

Abstraction: The process of removing details from a representation 
Is the map a good representation of the problem? What is a good replacement?



General problem formulation

CMPT 310 - Blind Search

10

A problem is defined by four items:

1. initial state e.g., "at Arad“

2. actions or successor function S(x) = set of action–state pairs 
¡ e.g., S(Arad) = {<Arad à Zerind, Zerind>, … }

3. goal test, can be
¡ explicit, e.g., x = "at Bucharest"
¡ implicit, e.g., Checkmate(x)

4. path cost (additive)
¡ e.g., sum of distances, number of actions executed, etc.
¡ c(x,a,y) is the step cost, assumed to be ≥ 0

� A solution is 
¡ A sequence of actions leading from the initial state to a goal 

state
¡ A sequence of actions is called a plan



Vacuum world state space graph

CMPT 310 - Blind Search

11

� states?
� actions?
� goal test?
� path cost?



Vacuum world state space graph

CMPT 310 - Blind Search

12

� states? integer dirt and robot location
� actions? Left, Right, Suck
� goal test? no dirt at all locations
� path cost? 1 per action



Example: The 8-puzzle

CMPT 310 - Blind Search

13

� states?

� actions?

� goal test?

� path cost?



Example: The 8-puzzle

CMPT 310 - Blind Search

14

On-line Version

� states? locations of tiles 
� actions? move blank left, right, up, down 
� goal test? = goal state (given)
� path cost? 1 per move

http://mypuzzle.org/sliding


Example: robotic assembly

CMPT 310 - Blind Search

15

� states?:
¡ real-valued coordinates of robot joint angles 
¡ parts of the object to be assembled

� actions?:
¡ continuous motions of robot joints

� goal test?: 
¡ complete assembly

� path cost?:
¡ time to execute



Problem Solving Algorithms

CMPT 310 - Blind Search

16



Problem-solving agents

CMPT 310 - Blind Search

17

Note: this is offline problem solving; solution executed “eyes closed.”



Tree search algorithms

CMPT 310 - Blind Search

18

� Basic idea:
¡ offline, simulated exploration of state space by generating 

successors of already-explored states (a.k.a.~expanding
states)

¡



Tree search example

CMPT 310 - Blind Search

19

• The space of sequences can be arranged as a tree
• The search tree is a theoretical construct, not 

actually built



Tree search example

CMPT 310 - Blind Search

20



Tree search example

CMPT 310 - Blind Search

21



Search Graph vs. State Graph

� Be careful to distinguish
¡ Search tree: Nodes are sequences of actions.

÷ The search tree never contains a cycle.

¡ State Graph: Nodes are states of the environment.
÷ The state graph may contain a cycle.

¡ Node in Search Tree = Path in State Graph

� Demo: http://aispace.org/search/

CMPT 310 - Blind Search

22

http://aispace.org/search/


Evaluating Search Strategies

CMPT 310 - Blind Search

23

� A search strategy is defined by picking the order of path 
expansion

� Strategies are evaluated along the following dimensions:
¡ completeness: does it always find a solution if one exists?
¡ time complexity: number of nodes generated
¡ space complexity: maximum number of nodes in memory
¡ optimality: does it always find a least-cost solution?
¡

� Time and space complexity are measured in terms of 
¡ b: maximum branching factor of the search tree
¡ d: depth of the least-cost solution
¡ m: maximum depth of the state space (may be ∞)
¡



B R E A D T H - F I R S T

D E P T H - F I R S T

I T E R A T E D  D E E P E N I N G

Search Strategies

CMPT 310 - Blind Search

24



Uninformed search strategies

CMPT 310 - Blind Search

25

� Uninformed search strategies 
¡ use only the information available in the problem definition
¡ No domain knowledge or expertise

� Breadth-first search

� Depth-first search

� Depth-limited search

� Iterative deepening search



Breadth-first search

CMPT 310 - Blind Search

26

� Expand shortest paths

� Frontier = set of  but generated paths

� Frontier = leaf nodes in the search tree.

� Implementation:
¡ Frontier is a FIFO queue, i.e., new successors go at end



Breadth-first search

CMPT 310 - Blind Search

27

� Expand shortest  paths

� Implementation:
¡ frontier is a FIFO queue, i.e., new successors go at end



Breadth-first search

CMPT 310 - Blind Search

28

� Expand shortest  paths

� Implementation:
¡ frontier is a FIFO queue, i.e., new successors go at end



Breadth-first search

CMPT 310 - Blind Search

29

� Expand shortest  paths

� http://aispace.org/search/

� Implementation:
¡ frontier is a FIFO queue, i.e., new successors go at end

http://aispace.org/search/


Properties of breadth-first search

CMPT 310 - Blind Search

30

� Complete? Time? Space?Optimal?

� Complete? Yes (if b is finite)

� Time? 1+b+b2+b3+… +bd = O(bd)

� Space? O(bd) (keeps every node in memory)

� Optimal? Yes 



Example Numbers

Assumptions

CMPT 310 - Blind Search

31

Branching
Factor b

Node 
Generation/sec

Node size

10 1M 1MB

Resource Consumption
Depth Nodes Time Memory

10 1010 3 hours 10 TeraBytes

12 1012 13 days 1 petabyte

Space is the big problem (more than time)



Depth-first search

CMPT 310 - Blind Search

32

� Expand longest  paths

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

33

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

34

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

35

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

36

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

37

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

38

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

39

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

40

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

41

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

42

� Expand longest path

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front



Depth-first search

CMPT 310 - Blind Search

43

� Expand longest path

� http://aispace.org/search/

� Implementation:
¡ frontier = LIFO queue, i.e., put successors at front

http://aispace.org/search/


Properties of depth-first search

CMPT 310 - Blind Search

44

� Complete? Time? Space?Optimal?
� Complete? No: fails in infinite-depth spaces, spaces with loops

¡ Modify to avoid repeated states along path (graph search)
¡ à complete in finite spaces

� Time? O(bm): terrible if maximum depth m is much larger than solution 
depth d
¡ but if solutions are dense, may be much faster than breadth-first

� Space? O(bm), i.e., linear space! Store single path with unexpanded 
siblings.
¡ Seems to be common in animals and humans.

� Optimal? No.
� Important for exploration (on-line search).



Depth-limited search

14 Jan 2004CS 3243 - Blind Search

45

� depth-first search with depth limit l,
¡ i.e., paths at depth l have no successors
¡ Solves infinite loop problem

� Common AI strategy: let user choose search/resource bound.

� Complete? No if l < d:

� Time? O(bl) = complete tree up to depth l.

� Space? O(bl), i.e., linear space!

� Optimal? No if l > d (solution needs more than limit)



Iterative deepening search

CMPT 310 - Blind Search

46



Iterative deepening search l =0

CMPT 310 - Blind Search

47



Iterative deepening search l =1

CMPT 310 - Blind Search

48



Iterative deepening search l =2

CMPT 310 - Blind Search

49



Iterative deepening search l =3

CMPT 310 - Blind Search

50



Iterative deepening search overhead

CMPT 310 - Blind Search

51

� Number of paths generated in a depth-limited search to depth d
with branching factor b: 

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

� Number of paths generated in an iterative deepening search to 
depth d with branching factor b: 

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

� For b = 10, d = 5,
¡ NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

¡ NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

� Overhead = (123,456 - 111,111)/111,111 = 11%



Iterative deepening search overhead

CMPT 310 - Blind Search

52

� Number of paths generated in a depth-limited search to depth d
with branching factor b: 

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

� Number of paths generated in an iterative deepening search to 
depth d with branching factor b: 

NIDS = db0 + (d-1) b1 + (d-2)b2 + … + 3bd-2 +2bd-1 + 1bd

� For b = 10, d = 5,
¡ NDLS = 1 + 10 + 100 + 1,000 + 10,000  = 11,106

¡ NIDS = 5 + 40 + 300 + 2,000 + 10,000= 12,345

� Overhead = (12,345 - 11,106)/11,106 = 11%



Iterative deepening search

CMPT 310 - Blind Search

53

� Number of paths generated in a depth-limited search to depth d
with branching factor b: 

NDLS = b1 + b2 + … + bd-2 + bd-1 + bd

� Number of paths generated in an iterative deepening search to 
depth d with branching factor b: 

NIDS = d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

� For b = 10, d = 5,
¡ NDLS = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

¡ NIDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

� Overhead = (123,456 - 111,111)/111,111 = 11%



Properties of iterative deepening search

CMPT 310 - Blind Search

54

� Complete? Yes

� Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

� Space? O(bd)

� Optimal? Yes, if step cost = 1



Summary of algorithms

CMPT 310 - Blind Search

55

Criterion Breadth-
First

Depth-First Depth-
Limited

Iterative 
Deepening

Complete? Yes No No Yes

Time O(bd) O(bm) O(bl) O(bd)

Space O(bd) O(bm) O(bl) O(bd)

Optimal? Yes No No Yes



Graph Search

CMPT 310 - Blind Search

56



Repeated states

CMPT 310 - Blind Search

57

� Failure to detect repeated states can turn a linear 
problem into an exponential one!

�



Graph search

CMPT 310 - Blind Search

58

• Simple solution: just keep track of which states you have visited.
• Usually easy to implement in modern computers.



The Separation Property of Graph Search

(c)(b)(a)

CMPT 310 - Blind Search

59

• Black: expanded nodes.
• White: frontier nodes.
• Grey: unexplored nodes.



Summary

CMPT 310 - Blind Search

60

� Problem formulation usually requires abstracting away 
real-world details to define a state space that can feasibly be 
explored

�

� Variety of uninformed search strategies

�

� Iterative deepening search uses only linear space and not 
much more time than other uninformed algorithms

�


