Search and Sequential Action

CMPT 310 - Blind Search

Problem formulation: representing sequential
problems.

Example problems.

Planning for solving sequential problems without
uncertainty.

Basic search algorithms

yes

Fully
Observable

yes

Deterministic

yes

Sequential

yes Discrete

no

Planning,
heuristic

Control,
cybernetics

search

Static Environment

Atomic States
(not factored or

structured)
no
Discfete no
yes
Constraint Continuous Function
Satisfaction Optimization

Search Problems

CMPT 310 - Blind Search

Choice 1n a Deterministic Known Environment

- Without uncertainty, choice is trivial in principle:
choose what you know to be the best option.

- Trivial if the problem is represented in a look-up
table.

[T
Chocolate 10
Wine 20

Book 15

But choice can be computationally hard if the
problem information is represented differently.

Options may be structured and the best option
needs to be constructed.

E.g., an option may consist of a path, sequence of actions, plan,
or strategy.

The value of options may be given implicitly rather
than explicitly.

E.g., cost of paths need to be computed from map.

Sequential Action Example

e Deterministic, fully observable - single-state problem

o Agent knows exactly which state it will be in; solution is a
sequence

o Vacuum world - everything observed 1 ;@ - 2 - ;;Q
o Romania - The full map is observed
3 | =4 4 =)
R oZR
- Single-state: Start in #5. Solution?? ° 4| ° ﬁ
o [Right, Suck] 7 [g o7

CMPT 310 - Blind Search

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Buchares

: be in Bucharest

states: various cities
actions: drive between cities

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Romania

Jimisoara

CMPT 310 - Blind Search

General problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad”
o. actions or successor function S(x) = set of action—state pairs
o e.g.,S(Arad) = {<Arad 2 Zerind, Zerind>, ... }

5. goal test, can be
o explicit, e.g., x = "at Bucharest"
o implicit, e.g., Checkmate(x)

4. path cost (additive)

o e.g., sum of distances, number of actions executed, etc.
® c(%c,a,y) is the step cost, assumed to be = 0

e A solution is

o A sequence of actions leading from the initial state to a goal
state

o A sequence of actions 1s called a plan
CMPT 310 - Blind Search

Vacuum world state space graph

CMPT 310 - Blind Search

Vacuum world state space graph

CMPT 310 - Blind Search

Example: The 8-puzzle

CMPT 310 - Blind Search

On-line Version 5 6 3 ||[4

8 3 1 6 7

Start State Goal State

» states? locations of tiles

» actions? move blank left, right, up, down
» goal test? = goal state (given)

 path cost? 1 per move

http://mypuzzle.org/sliding

Example: robotic assembly

CMPT 310 - Blind Search

Problem Solving Algorithms

CMPT 310 - Blind Search

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state < UPDATE-STATE(state, percept)
if seq is empty then
goal — FORMULATE-GOAL(state)
problem — FORMULATE-PROBLEM(state, goal)

seq+«— SEARCH(problem)
action < FIRST(seq)
seq<— REST(seq)
return action

CMPT 310 - Blind Search

Tree search algorithms

» Basic idea:

o offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a.~expanding
states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

CMPT 310 - Blind Search

Tree search example

r @]
s.m/_A\\ ,/.\ \
N Nlgy/
NE
,\/
/- .
\
\
[\ 7/
. ASK
7 ,r\ \
18X
,.m_ \ \/ ‘
£/ Nlgy/
N @
,m_/
N
8/
ém*
NE/\
\ &/ N
\ _,,_, /
~ 1 AEK
YAV
..mw -
WARN \m/ /
. \ o
\ /_mw
VA
N

=

O

|

©

Q
wn
o
k=
m

1

o
i
™
T
o
=
O

Q
P—l
=
S
<
O
S
—
S
Q
2
Q
O
—
=

— o —
Pimnicu Vilesa)

CMPT 310 - Blind Search

Tree search example

LN

’—Zﬁ - —
a Fimnicu Vilos _Arad O _Lugoj D _ Ara
- ~ ~ ~ ~N <~ 1

CMPT 310 - Blind Search

Search Graph vs. State Graph

* Be careful to distinguish

o Search tree: Nodes are sequences of actions.
« The search tree never contains a cycle.

o State Graph: Nodes are states of the environment.
« The state graph may contain a cycle.

o Node in Search Tree = Path in State Graph
e Demo: http://aispace.org/search/

CMPT 310 - Blind Search

http://aispace.org/search/

Evaluating Search Strategies

» A search strategy is defined by picking the order of path
expansion

» Strategies are evaluated along the following dimensions:
: does it always find a solution if one exists?
: number of nodes generated
: maximum number of nodes in memory
: does it always find a least-cost solution?

» Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be)

Search Strategies

BREADTH-FIRST
DEPTH-FIRST
ITERATED DEEPENING

CMPT 310 - Blind Search

Uninformed search strategies

CMPT 310 - Blind Search

Breadth-first search

CMPT 310 - Blind Search

Breadth-first search

CMPT 310 - Blind Search

Breadth-first search

CMPT 310 - Blind Search

Breadth-first search

CMPT 310 - Blind Search

http://aispace.org/search/

Properties of breadth-first search

CMPT 310 - Blind Search

Example Numbers

Assumptions

Branching Node Node size
Factor b Generation/sec

10 1M 1MB

Resource Consumption

1010 3 hours 10 TeraBytes
12 1012 13 days 1 petabyte

Space is the big problem (more than time)

CMPT 310 - Blind Search

Depth-first search

@

LN
-~ ~
&y
/
)
/\

DHDDD MDD

/\ /N /N

CMPT 310 - Blind Search

Depth-first search

o o

7\ N,
©@ ©» ¢ 0

rh b rk Jo oA R oL
COREORORGEOROROEE

CMPT 310 - Blind Search

Depth-first search

f/> //> //> f/>
CRORORORORCORORC

CMPT 310 - Blind Search

Depth-first search

CMPT 310 - Blind Search

Depth-first search

[\ /

ORORO >.Q W) ro)

CMPT 310 - Blind Search

Depth-first search

\
/Fj 76)

SEVA
OXOGRORD) r~) G

CMPT 310 - Blind Search

Depth-first search

CMPT 310 - Blind Search

Depth-first search

CMPT 310 - Blind Search

Depth-first search

CMPT 310 - Blind Search

Depth-first search

CMPT 310 - Blind Search

Depth-first search

Depth-first search

http://aispace.org/search/

Complete? Time? Space?Optimal?
Complete? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path (graph search)
- complete in finite spaces

Time? O(b™): terrible if maximum depth m is much larger than solution
depth d

but if solutions are dense, may be much faster than breadth-first
Space? O(bm), i.e., linear space! Store single path with unexpanded
siblings.

Seems to be common in animals and humans.
Optimal? No.
Important for exploration (on-line search).

depth-first search with depth limit [,
1.e., paths at depth [have no successors
Solves infinite loop problem

Common Al strategy: let user choose search/resource bound.
Complete? No if 1 < d:

Time? O(b') = complete tree up to depth 1.

Space? O(bl), i.e., linear space!

Optimal? No if 1 > d (solution needs more than limit)

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth+ 0 to co do
result«— DEPTH-LIMITED- SEARCH(problem, depth)
if result # cutoff then return result

CMPT 310 - Blind Search

Iterative deepening search [=0

Limit=0 NO)

CMPT 310 - Blind Search

Iterative deepening search [=1

CMPT 310 - Blind Search

Iterative deepening search [=2

CMPT 310 - Blind Search

Iterative deepening search [=3

Limit=3 /;@\\
o 9
/ N\ /

AN
g B g B

/
Q

\
G

/
Q)

f/> f/> /l> f/> //> f/> f/> f/f f/> (/> f/> //>
®DODODWDE DHHDD DO BODH DYDY

/ \}'
GIERG)

//> f/> /l>
(D X © ™ W o

/7 N\
GRS

& % @ &
D &)) ©

\
GEERG

BT
ORCORORC)

CMPT 310 - Blind Search

Number of paths generated in a depth-limited search to depth d
with branching factor b:

Nprg=b°+ b1+ b? + ... + b%2 + b1 + be

Number of paths generated in an iterative deepening search to
depth d with branching factor b:

Nips = (d+1)b° + d b* + (d-1)b2 + ... + 3bd2 +2bd1 4 1hd

For b =10, d = 5,
Npigs=1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
Nipg = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Number of paths generated in a depth-limited search to depth d
with branching factor b:

Nprg=b°+ b1+ b? + ... + b%2 + b1 + be

Number of paths generated in an iterative deepening search to
depth d with branching factor b:

Nips = db° + (d-1) b* + (d-2)b? + ... + 3bd2 +2bd-! + 1pd

For b =10, d = 5,
Npig=1+ 10 + 100 + 1,000 + 10,000 = 11,106
Nips =5+ 40 + 300 + 2,000 + 10,000= 12,345
Overhead = (12,345 - 11,106) /11,106 = 11%

Number of paths generated in a depth-limited search to depth d
with branching factor b:

Nprg=br+b? + ... + b%2 + b1 + b

Number of paths generated in an iterative deepening search to
depth d with branching factor b:

Nips = d bt + (d-1)b2 + ... + 3bd2 +2bd1 4 1bd

For b =10, d = 5,
Npig= 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
Nipg = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative deepening search

CMPT 310 - Blind Search

Summary of algorithms

Criterion Breadth- Depth-First | Depth- Iterative
First Limited Deepenlng

Complete?

Time O(bd) O(b"") O(b’) O(bd)
Space O(bY) O(bm) O(bl) O(bd)
Optimal? Yes No No Yes

CMPT 310 - Blind Search

Graph Search

CMPT 310 - Blind Search

Repeated states

CMPT 310 - Blind Search

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE- FRONT(fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
if STATE[nOde] is not in closed then
add STATE[node| to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

 Simple solution: just keep track of which states you have visited.
 Usually easy to implement in modern computers.

CMPT 310 - Blind Search

The Separation Property of Graph Search

CMPT 310 - Blind Search

Problem formulation usually requires abstracting away
real-world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

