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Environments with Uncertainty

Artificial Intelligence a modern approach
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The Big Picture: AI for Model-Based Agents

Artificial Intelligence a modern approach
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Review Example: Paying for Parking

Acts/States Get Caught (p) Not get caught (1-p)

Pay -$3.00 -$3.00

Don’t pay -$100 $0

Which option minimizes expected cost?

CMPT 310

4

Probabilities represent knowledge



Motivation for Uncertainty

� In many cases, our perceptions are incomplete (not enough 
information) or uncertain (sensors are unreliable).

� Rules about the domain are incomplete or admit 
exceptions.

� Probabilistic knowledge
¡ Quantifies uncertainty.

¡ Supports rational decision-making.



Outline

� Uncertainty and Rationality

� Probability

� Syntax and Semantics

� Inference Rules



Probabilistic Knowledge



Uncertainty vs. Logical Rules

� Cavity causes toothache.
� Cavity is detected by probe (catches).
� In logic:

¡ Cavity => Toothache.
÷ But not always, e.g. 

Cavity, dead nerve does not cause Toothache.
÷ Nonmonotonic rules: adding information changes 

conclusions.
¡ Cavity => CatchProbe.

÷ Also not always.



Probability vs. Determinism 

� Medical diagnosis is not deterministic.
¡ Laziness: failure to enumerate exceptions, qualifications, etc.
¡ Theoretical ignorance: domain theory is incomplete
¡ Practical ignorance: Even if we know all the rules, a patient 

might not have done all the necessary tests.

� Probabilistic assertions summarize effects of
¡Laziness
¡ Ignorance



Probability Syntax



Probability Syntax

� Basic element: variable that can be assigned a value. 
¡ Traditionally a factored representation

� Boolean variables
e.g., Cavity (do I have a cavity?)

� Discrete variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

� Atom = assignment of value to variable.
¡ Aka atomic event. Examples:
¡ Weather = sunny
¡ Cavity = false.

� Sentences are Boolean combinations of atoms.
¡ Same as propositional logic. Examples:
¡ Weather = sunny OR Cavity = false.
¡ Catch = true AND Tootache = False.



Probabilities and Possible Worlds

� Possible World/State: A complete assignment of 
a value to each variable.

� Removes all uncertainty.
� Event or proposition = set of possible worlds.
� Atomic event = a single possible world.

Logic Statistics Examples

n/a Variable Weather, Cavity, Probe, Toothache

Atom Variable Assignment Weather = sunny
Cavity = false

Possible World Atomic Event [Weather = sunny
Cavity = false
Catch = false
Toothache = true]



Random Variables

� A random variable has a probability 
associated with each of its values.

Variable Value Probability

Weather Sunny 0.7

Weather Rainy 0.2

Weather Cloudy 0.08

Weather Snow 0.02

Cavity True 0.2

Cavity False 0.8



Probability for Sentences

� Sentences also have probabilities assigned to 
them.

Sentence Probability

P(Cavity = false AND Toothache = false) 0.72

P(Cavity = true OR Toothache = false) 0.08



Probability Notation

� Often probability theorists write A,B instead of A Ù B

� If the intended random variables are known, they 
are often not mentioned.

� If a statement is true for all values, the values are 
often not mentioned.

Shorthand Full Notation

P(Cavity = false,Toothache = false) P(Cavity = false ÙToothache = false) 

P(false, false) P(Cavity = false ÙToothache = false)

P(C)>0 P(C=true)>0 and P(C=false)>0



Joint Probabilities



Assigning Probabilities to Sentences

� The joint probability distribution specifies the 
probability of each possible world (atomic event).

� A joint distribution determines an probability for every 
sentence.

� How? Spot the pattern.



Probabilities for Sentences: Spot the Pattern

Sentence Probability

P(Cavity = false AND Toothache = false) 0.72

P(Cavity = true OR Toothache = false) 0.92

P(Toothache = false) 0.8



Inference by enumeration



Inference by enumeration

� Marginalization: For any sentence A, sum the atomic events 
(possible worlds) where A is true.

� P(Toothache=T) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2.



Probabilistic Inference Rules



Axioms of probability

For any sentence A, B

0 ≤ P(A) ≤ 1

�P(true) = 1 and P(false) = 0

�P(A) = P(B) if A and B are 
logically equivalent. 

�P(A Ú B) = 
P(A) + P(B) - P(A Ù B)

sentences considered as sets of 
possible worlds.



Rule 1: Logical Equivalence

P(NOT (NOT Cavity=T)) P(Cavity=T)

0.2 0.2

P(NOT 
(Cavity = T OR Toothache = T))

P(Cavity = F AND Toothache = F)

0.72 0.72

P(NOT 
(Cavity = T AND Toothache = T))

P(Cavity = F OR Toothache = F)

0.88 0.88



The Logical Equivalence Pattern

P(NOT (NOT 
Cavity=T))

= P(Cavity=T)

0.2 0.2

P(NOT 
(Cavity=T OR Toothache=T)

= P(Cavity = F AND Toothache = F)

0.72 0.72

P(NOT 
(Cavity =T AND Toothache =T))

= P(Cavity = F OR Toothache = 
F)

0.88 0.88

Rule 1: Logically 
equivalent expressions 
have the same probability.



Psychology: Probability Judgements

Consider the following famous experiment.

Two groups of subjects. 

1. Would you opt for surgery if the survival rate is 90 
percent?

2. Would you opt for surgery if the mortatility rate is 
10 percent?

Which would you prefer?



Rule 2: Marginalization

P(Cavity=T, 
Toothache=T)

P(Cavity=T, 
Toothache = F)

P(Cavity=T)

0.12 0.08 0.2

P(Cavity=T, 
Toothache=T)

P(Cavity = F, 
Toothache=T)

P(Toothache=T)

0.12 0.08 0.2

P(Cavity = F, 
Toothache=T)

P(Cavity = F, 
Toothache = F)

P(Cavity = F)

0.08 0.72 0.8



The Marginalization Pattern

P(Cavity=T, 
Toothache=T
)

+ P(Cavity=T, 
Toothache = 
F)

= P(Cavity=T)

0.12 0.08 0.2

P(Cavity=T, 
Toothache=T
)

+ P(Cavity = F, 
Toothache=T)

= P(Toothache=T)

0.12 0.08 0.2

P(Cavity = F, 
Toothache=T
)

+ P(Cavity = F, 
Toothache = 
F)

= P(Cavity = F)

0.08 0.72 0.8



Prove the Pattern: Marginalization

Theorem. P(A) = P(A,B) + P(A, not B)

�Proof. 

1.A is logically equivalent to 
[A and B) Ú (A and not B)].

2.P(A) = P([A and B) Ú (A and not B)]) =
P(A and B) + P(A and not B) –
P([(A and B) Ù (A and not B)]). Disjunction Rule.

3.[A and B) Ù (A and not B)] is logically equivalent to 
false, so P([(A and B) Ù (A and not B)]) =0.

4.So 2. implies P(A) = P(A and B) + P(A and not B).



Conditional Probabilities



Conditional Probabilities: Intro

� Given (A) that a die comes up with an odd number, 
what is the probability that (B) the number is
1. a 2

2. a 3

� Answer: the number of cases that satisfy both A and 
B, out of the number of cases that satisfy A.

� Examples:
1. #faces with (odd and 2)/#faces with odd

= 0 / 3 = 0.

2. #faces with (odd and 3)/#faces with odd
= 1 / 3.



Conditional Probs ctd.

� Suppose that 50 students are taking 310 and 30 are 
women. Given (A) that a student is taking 310, what 
is the probability that (B) they are a woman?

� Answer: 
#students who take 310 and are a woman/
#students in 310 
= 30/50 = 3/5.

� Notation: P(B|A)



Conditional Ratios: Spot the Pattern

� Spot the Pattern

P(Student 
takes 310 
and is 
woman)

P(Student 
takes 310)

P(Student is 
woman|Stu
dent takes 
310)

30/15,000 50/15,000 3/5

P(die 
comes up 
with 3)

P(die 
comes up 
with odd 
number)

P(3|odd 
number)

1/6 1/2 1/3



Conditional Probs: The Ratio Pattern

� Spot the Pattern

P(Student 
takes 310 
and is 
woman)

/ P(Student 
takes 310)

= P(Student 
is 
woman|Stu
dent takes 
310)

30/15,000 =50/15,000 3/5

P(die 
comes up 
with 3)

/ P(die 
comes up 
with odd 
number)

= P(3|odd 
number)

1/6 1/2 1/3

P(A|B) = P(A and B)/ P(B) Important!



Conditional Probabilities: Motivation

� From logic: much knowledge can be represented as 
implications 
B1,..,Bk =>A.

� Conditional probabilities are a probabilistic version 
of reasoning about what follows from conditions.

� Cognitive Science: Our minds store implicational 
knowledge.

� Key for understanding Bayes nets.



Conjunctivitis

Linda is 31 years old, single, outspoken, and very bright. She 
majored in philosophy. As a student, she was deeply 
concerned with issues of discrimination and social justice, 
and also participated in antinuclear demonstrations. 

Here are some possibilities for what Linda is doing now; 
please rank them according to likelihood.

a. Linda is a bank teller.

b. Linda works for a book publisher.

c. Linda is a bankteller who is active in the feminist 
movement.



Modus Ponens and the Product Rule

Classical Logic Probability

If A, then B P(B|A) = x

A P(A) = y

Therefore: A and B Therefore: P(A,B)=?



The Product Rule: Spot the Pattern

P(Cavity=T
)

P(Toothache=T|Cavity=T
)

P(Cavity=T,Toothache=T)

0.2 0.6 0.12

P(Cavity =F) P(Toothache=T|Cavity = 
F)

P(Toothache=T,Cavity =F)

0.8 0.1 0.08

P(Toothache=T
)

P(Cavity=T| 
Toothache=T)

P(Cavity=T,Toothache=T)

0.2 0.6 0.12



The Product Rule Pattern

P(Cavity=T) x P(Toothache|Cavity=T) = P(Cavity=T,
Toothache=T)

0.2 0.6 0.12

P(Cavity =F) x P(Toothache=T|Cavity = F) = P(Toothache=T,
Cavity =F)

0.8 0.08 0.1

P(Toothache=T
)

x P(Cavity| 
Toothache=T)

= P(Cavity=T,
Toothache=T)

0.2 0.6 0.12



Exercise: Conditional Probability

� Prove the product rule P(A,B) = P(A|B) x P(B).
¡ Marginal x conditional è joint.

� Two sentences A,B are independent if 
P(A|B) = P(A). Prove that the following conditions 
are equivalent if P(A) > 0, P(B)> 0.

1. P(A|B) = P(A).

2.P(B|A) = P(B).

3.P(A,B) = P(A) x P(B).



Independence



Independence

� Suppose that Weather is independent of the Cavity Scenario. Then the 
joint distribution decomposes:

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

� Absolute independence powerful but rare

� Dentistry is a large field with hundreds of variables, none of which are 
independent. What to do?



Conditional independence

� If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:

�

(1) P(catch | toothache, cavity) = P(catch | cavity)

� The same independence holds if I haven't got a cavity:

(2) P(catch | toothache,¬cavity) = P(catch | ¬cavity)

� Catch is conditionally independent of Toothache given Cavity:

P(Catch | Toothache,Cavity) = P(Catch | Cavity)
� The equivalences for independence also holds for conditional 

independence, e.g.:

P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch| Cavity)



Conditional Independence Conditions

� The same equivalences hold for both conditional and 
unconditional independence. 

� Theorem. The following conditions are equivalent 
if P(A|C) > 0, P(B|C)> 0.

1. P(A|B,C) = P(A|C).

2.P(B|A,C) = P(B|C).
3.P(A,B|C) = P(A|C) x P(B|C).



Conditional independence and the Joint Distribution

� Write out full joint distribution using product rule:

P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

= P(Toothache | Cavity) P(Catch|Cavity) P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers 

� In most cases, the use of conditional independence reduces the 
size of the representation of the joint distribution from 
exponential in n to linear in n.

� Conditional independence is our most basic and robust form of 
knowledge about uncertain environments



Summary

� Probability is a rigorous formalism for uncertain 
knowledge.

� Joint probability distribution specifies probability 
of every atomic event (possible world).

� Queries can be answered by summing over atomic 
events.

� For nontrivial domains, we must find a way to 
compactly represent the joint distribution.

� Independence and conditional independence 
provide the tools.


