 CMPT 310

Artificial Intelligence Survey

Simon Fraser University

Spring 2015

Instructor: Oliver Schulte

Assignment 4: Programming Assignment for Chapter 18.

You can complete this assignment instead of the written assignment 4.

Instructions: Check the instructions in the syllabus. The university policy on academic dishonesty and plagiarism (cheating) will be taken very seriously in this course. You must not let other students copy your work outside your group. Discussions of the assignment is okay, for example to understand the concepts involved. If you work in a group, put down the name of all members of your group. On your assignment, put down your name, the number of the assignment and the number of the course. Spelling and grammar count.

For the due date please see our course management server https://courses.cs.sfu.ca .

Programming

We recommend completing this assignment in Python. Mainly because Python code is the easiest for us to grade, but also because Python has good support for high-level manipulation of structured objects.
We can accept the languages supported in the CSIL environment, which include C++, Python, Java, Visual Basic, C#. Your comments on the code should make clear the logic of your source code even for a reader who may not have programmed in your chosen language before. It must be possible to execute your code in the CSIL environment, and you must provide instructions for how to do so. If we cannot run your code, you will lose marks. Here is some advice for checking the executability.

1) Ask a friend to run it following your instructions on CSIL.

2) Come to one of our office hours and test it with the TA or the instructor.
Group Work. You can work in a group with up to 3 individuals. Please put down the names of your fellow group members. All team members will receive the same mark.
Decision Tree Learning
Summary. Implement the ID3 decision tree learning algorithm described in the textbook (and in the slides). Try it on the dataset from homework 4 and on a dataset that you generate yourself from the Wumpus world.
Problem Description.

Input.

The input to your program is a text file called “data.csv”. This is a comma-separated text file with headers. The headers specify the attributes for decision tree learning. Each row specifies a data point with attribute values. There is no ID column.

Output.

Your program should implement the ID3 decision tree learning algorithm and in the slides. If at some stage in the construction of the tree, there is more than attribute that maximizes information gain, then break tries using the alphabetic order of the attributes. You need to develop a suitable way to display a decision tree. A simple method that is compatible with text output is to use indentation to indicate descending one level.

Task 1. 100 points.
Run your program on the input dataset provided (the one from the written Assignment 4) and show the tree learned.
What to Hand In

Please upload your solution and documentation to courses.cs.sfu.ca. It is up to you to provide evidence that your program is correct. At a minimum you should include the following.

· Source Code.

· Documentation on how to run your program. This should include at least a readme file.

· Description of how your program performs on the input provided.

· Show a screenshot of how your program reads the input file and what output it produces.

· Explain why you think that the output is correct.

Grading Criteria

· Correctness: 70%

· Program runs and find correct solution.

· Algorithm implementation (e.g., tie breaking).

· We may use our own test case.

· Quality of documentation: 30%

· Screenshots, readme files.

· Comments in the source code. Your comments on the code should make clear the logic of your source code even for a reader who may not have programmed in your chosen language before.
· Total points: 100.
Task 2. 100 points.
[image: image1.png]ssssss
S Snens

PIT

PIT

PIT

Figure 1
Let’s try to learn the rules for the Wumpus world. The rules are as follows.

· If and only if a square contains a pit, its neighbours contain a breeze.

· If and only if a square contains a Wumpus, its neighbours contain a stench.

Randomly generate data that describe the contents of location [2,2] and its four neighbours. You can model this as a learning problem like this.

· There are 5 attributes labelled [1,2],[2,1],[2,2],[2,3],[3,2].

· The 4 possible values of attribute [2,2] are “nothing”, “breeze only”, “stench only”, “both breeze and stench”.

· Each attribute [1,2],[2,1], [2,3],[3,2] has the same three possible values, namely “nothing”, “pit”, “Wumpus”.

1. Randomly generate datapoints for the 5 attributes that are consistent with the rules of the Wumpus world (e.g., if there is a pit on [2,3], then there is a breeze on [2,2].) [make example dataset]
2. Present the data to your ID3 implementation to see if ID3 recovers the Wumpus world rules above for predicting the contents of [2,2] from its neighbours. If ID3 does not find the rules, increase the number of datapoints. I would suggest starting with 100 random data points, then going to 200, 300 etc.

What to Hand In

It is up to you to provide evidence that your program is correct. At a minimum you should include the following.

· Source Code.

· Documentation on how to run your program. This should include at least a readme file.

· Description of how the rules are learned.
· Include the input file with random data that suffice to learn the Wumpus rules with ID3. Please call it “random.csv”. How did you generate the random data? How many random data points did your program require?
· Show a screenshot of how your program reads the input file and what output (decision tree) it produces.

· Explain why you think that the output is correct.

Grading Criteria

Same as in Part 1.
