How does genotype determine phenotype?

How does genotype affect phenotype?

ACCGTCGGTATAGGCTTATAAAATCATCGGGATCCTATTAATGAGGAAAA

Genetic traits
Disease
Evolutionary fitness

What are the functional elements in the human genome?

Primary tool: performing sequencing-based genomics assays

Sequencing-based genomics assays measure many types of genomic activity

DNase-seq and ATAC-seq measure DNA accessibility

Hundreds of human tissues have been profiled with genomics assays

Sequencing-based assays are a rich data set for understanding the genome

Predicting effects of noncoding variants with deep learning-based sequence model

Jian Zhou & Olga G Troyanskaya Nature Methods 2015

ChIP-seq peak calls indicate confident transcription factor binding sites

• Peak calling: Stack up the reads in the genome; choose the tall stacks.

Issues to consider:

- Sequencing fragment lengths
- Sequencing read lengths
- Experimental biases
- Mappability
- GC bias
- How to pick a threshold and assign statistical confidence

Problem setup

The traditional model for understanding transcription factor binding is the position-weight matrix (PWM)

	1	2	3	4	5	6	7
Α	1	4	1	2	0	17	13
C	28	5	5	0	3	3	2
G	0	0	4	0	25	1	7
Т	2	22	21	29	4	10	9

ACCGTCGGTATAGGCTTATAAATCTCGGGAT

How can we get a better model than sequence motifs?

- DNA physical shape
- Variable gaps
- Cooperativity between TFs

Nucleosome interactions

Why deep neural networks?

Deep learning is best when you have more data than sense.

Jacob Schreiber

Sequence representation: one-hot encoding

One-hot encoding

A convolutional network reduces parameters by applying the same function across each portion of the input

A multi-task approach shares representations between factors

The deep neural network captures complex patterns of motif occurrence

Locus sequence

Concern: Deep neural networks have a lot of parameters to train

We have plenty of data to train a deep model

Supplementary Note. DeepSEA model configuration

Model Architecture:

- 1. Convolution layer (320 kernels. Window size: 8. Step size: 1.)
- 2. Pooling layer (Window size: 4. Step size: 4.)
- 3. Convolution layer (480 kernels. Window size: 8. Step size: 1.)
- 4. Pooling layer (Window size: 4. Step size: 4.)
- 5. Convolution layer (960 kernels. Window size: 8. Step size: 1.)
- 6. Fully connected layer (925 neurons)
- 7. Sigmoid output layer

Regularization Parameters:

Dropout proportion (proportion of outputs randomly set to 0):

Layer 2: 20%

Layer 4: 20%

Layer 5: 50%

All other layers: 0%

L2 regularization (λ_1): 5e-07

L1 sparsity (λ_2): 1e-08

Max kernel norm (λ_3): 0.9

DeepSEA accurately predicts TF binding and DNase hypersensitivity

Mean AUC: 0.958

DeepSEA can perform in-silico mutagenesis

Can DeepSEA predict known regulatory variants?

Can DeepSEA predict known regulatory variants?

DeepSEA accurately predicts known regulatory variants

Machine learning methods for the genotype-phenotype relationship, gene regulation and epigenomics

Segmentation and genome annotation

Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes J, Noble WS. Nature Methods 2012. *Unsupervised pattern discovery in human chromatin structure through genomic segmentation*

Maxwell W Libbrecht, Oscar L Rodriguez, Zhiping Weng, Jeffrey A Bilmes, Michael M Hoffman, William Stafford Noble. Genome Biology 2019. *A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types*

Unsupervised machine learning is a way to find patterns in a data set

Segmentation and genome annotation (SAGA) algorithms partition and label the genome on the basis of genomics data sets

ChromHMM: Ernst, J. and Kellis, M. *Nature Biotechnology*, 2010 Segway: Hoffman, M et al. *Nature Methods*, 2012

Method: unsupervised probabilistic graphical model

hidden random variable

observed random variable

Training: Expectation-Maximization (EM) algorithm

Full dynamic Bayesian network model

What biological phenomenon does each unsupervised label correspond to?

Unsupervised annotation discovers several types of regulatory elements

Unsupervised annotation discovers several types of regulatory elements

Unsupervised annotation discovers several types of regulatory elements

Annotations of hundreds of human cell types

Project option #1: Epigenome clustering

Machine learning methods for the genotype-phenotype relationship, gene regulation and epigenomics

Ernst J, Kellis M. Nature Biotechnology 2015. Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues.

Jacob Schreiber, Timothy Durham, Jeffrey Bilmes & William Stafford Noble. Genome Biology 2020. *Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome*

Many experiments have been performed, but still only a fraction of possible experiments

1,014 experiments performed out of a possible 3,048

Problem: Can we impute the output of missing experiments?

The signal of epigenomic assays vary across cell types

Avocado is a deep tensor factorization approach

Imputed data has high correlation with observed data

Imputed data has high correlation with observed data

Imputed data recovers promoters and TSSs better than observed data

Initial inspection of the imputations suggest that Avocado performs well

Avocado performs well well genome-wide

\mathbf{MSE} -	global	1 obs	1 imp	\mathbf{Prom}	\mathbf{Gene}	\mathbf{Enh}
ChromImpute	0.113	0.941	1.09	0.3246	0.1494	0.3164
PREDICTD	0.1	1.76	0.897	0.2576	0.1295	0.267
Avocado	0.1	1.66	0.845	0.249	0.1295	0.26

MSE-global: Mean squared error (MSE) across the full length of the genome

MSE-1obs: MSE at the top 1% of genomic positions ranked by experimental signal

MSE-1imp: MSE at the top 1% of genomic positions ranked by imputed signal

MSE-Prom: MSE at promoter regions defined by GENCODE

MSE-Gene: MSE at gene bodies defined by GENCODE

MSE-Enh: MSE at enhancer regions defined by FANTOM5

Machine learning methods for the genotype-phenotype relationship, gene regulation and epigenomics

Predicting phenotype from genotype

ACCGTCGGTATAGGCTTATAAATCTCGGGAT

Genetic traits
Disease
Evolutionary fitness

Genetic variation is driven by phylogeny

There are far more features than labels for predicting phenotype

10⁹ genetic positions

AH Safari, N Sedaghat, H Zabeti, A Forna, L Chindelevitch, M Libbrecht. Predicting drug resistance in M. tuberculosis using a long-term recurrent convolutional network architecture. Proceedings of ACM-BCB 2021

Drug resistant tuberculosis is a global health problem

10 million People got infected

1.5 million People died from TB

0.5 million New resistance cases

A gene burden-based method for predicting drug resistance in TB.

Gene burden-based features

2 Long-term Recurrent Convolutional Network (LRCN)

Combing a CNN and LSTM enables the model to take into account local arrangement of genes

An LRCN performs better than alternatives at a clinicallyrelevant false positive rate

Project option #2: Predict drug resistance in TB

SNPs

0 0 1 0 0 1 0 0 0 0 ...

Bacterial isolates

Gene ID

11122333333

Amikcin Capreomycin ... sfna sfna sfna

SRSSS...

Genotype

Drug resistance

Speaking

- Content
- Visual aids
 - Slides
 - Schematics
 - Data figures
- Delivery

Presentations should have a main thesis

Err on the side of too much background

Re-engage the audience using a home slide

Outline

- Introduction
- Methods
- Results
- Conclusion

Machine learning methods for the genotype-phenotype relationship, gene regulation and epigenomics

Text should be in full sentences

Text should be in full sentences

"Method A crash rate too high"

- Slide titles: Use a full sentence explaining the main point of the slide.
- Notation, acronyms: Re-introduce every time you use it.
- · Animate in each slide element as you present it.
- Make every slide element legible (font size 18+)

Reduce text by translating it to schematics

Reduce text by translating it to schematics

A class of methods known as *semi-automated genome annotation* (SAGA) algorithms are widely used to perform such integrative modeling of diverse genomics data sets. These algorithms take as input a collection of genomics data sets from a particular cell type. They output (1) a set of integer *state labels*, such that each state label putatively corresponds to a type of genomic activity (such as active promoter, active transcription or repressed region), and (2) a partition of the genome and annotation of each genomic segment with one state label. These methods are "semi-automated" because a human performs a functional interpretation of the state labels after the annotation process. In this interpretation step, the human assigns an *interpretation term* to each state label, such as "Promoter" or "Repressed", indicating its putative function.

Segmentation and genome annotation (SAGA) algorithms partition and label the genome on the basis of genomics data sets

ChromHMM: Ernst, J. and Kellis, M. *Nature Biotechnology*, 2010 Segway: Hoffman, M et al. *Nature Methods*, 2012

What biological phenomenon does each unsupervised label correspond to?

Figures should make a point

Walk the audience through each figure

What types of genomic elements did the algorithm find?

What types of genomic elements did the algorithm find?

What types of genomic elements did the algorithm find?

Practice your delivery