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Genotype usually determines phenotype either through (1) protein-
coding sequence or (2) gene regulation
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What are the functional elements in the human
genome?

CEEHRC NETWORK
Canadian Epigenetics, Environment and Health Research Consortium Network
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Primary tool: performing sequencing-based genomics assays



ChiIP-seq measures where a given protein binds along the
genome
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ChiIP-seq measures where a given protein binds along the
genome
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ChiIP-seq measures where a given protein binds along the
genome
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Sequencing-based genomics assays measure many
types of genomic activity
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ENCODE Project Consortium 2011. PLoS Biol 9:e1001046
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DNase-seq and ATAC-seq measure DNA
accessibility
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Hundreds of human tissues have been profiled with
genomics assays
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Sequencing-based assays are a rich data set for understanding
the genome

Genomics assays
(~6000)

Genomic positions (~3 billion)
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Predicting effects of noncoding variants
with deep learning-based sequence model

Jian Zhou & Olga G Troyanskaya
Nature Methods 2015



ChlP-seq peak calls indicate confident
transcription factor binding sites

159459500 | 159460000 159460500 |

Peak calling: Stack up the reads in the FORAS DM *paterep

genome; choose the tall stacks. st AR R G T
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Issues to consider:
Sequencing fragment lengths
Sequencing read lengths 1 |
Experimental biases FOXAS signal
Mappability
GC bias
How to pick a threshold and assign

statistical confidence




Problem setup

Reference sequence| ACCGTCGGTATAGGCTATAAATCTCGGGAT

CTCF binding in oLl v L |

liver cells (ChlP-seq)

'

Observed variant

ACCGTCGGTATAGGCATATAAATCTCGGGAT

\ /

Does variant affect CTCF
binding Iin liver?




The traditional model for understanding transcription
factor binding is the position-weight matrix (PWM)
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How can we get a better model than sequence
motifs?

- DNA physical shape
- Variable gaps g
- Cooperativity between TFs cooperativity: . R
. Nucleosome interactions " o
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Why deep neural networks?

Deep learning is best when you have more data than sense.
— Jacob Schreliber



Sequence representation: one-hot encoding

One-hot encoding
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A convolutional network reduces parameters by applying
the same function across each portion of the input
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A multi-task approach shares representations
between factors

Doesn’t bind

Prediction

Intermediate representation

T
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The deep neural network captures complex
patterns of motif occurrence

CTCF binds
here in liver cells?

Motif spacial
relationship circuit
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Locus sequence| ACCGTCGGTATAGGCTTATAAATCTCGGGATACCGTCGGTATAGGCTTATAA




Concern: Deep neural networks have a lot of
parameters to train

~108 parameters

~102 parameters

CletQC..celCTea Clet(C..GICTea  Clat(l..CllCTG

s A I q%@g S —

ACCGTCGGTATAGGCTTATAAATCTCGGGATACCGTCGGTATAGGCTTATAA

= =1 Vil _——C v =5 = WA 1 Vil —C—=—7 _=—%



We have plenty of data to train a deep model

~106 genomic positions
-————-m—
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~10° training data points >

~108 neural
network parameters



Supplementary Note. DeepSEA model configuration

Model Architecture:

1. Convolution layer ( 320 kernels. Window size: 8. Step size: 1. )
2. Pooling layer ( Window size: 4. Step size: 4. )
3. Convolution layer ( 480 kernels. Window size: 8. Step size: 1. )

4. Pooling layer ( Window size: 4. Step size: 4. )
5. Convolution layer ( 960 kernels. Window size: 8. Step size: 1. )

6. Fully connected layer ( 925 neurons )
7. Sigmoid output layer

Regularization Parameters:

Dropout proportion (proportion of outputs randomly set to 0):
_ayer 2: 20%

_ayer 4: 20%

_ayer 5: 50%

All other layers: 0%

L2 regularization (A,): 5e-07
L1 sparsity (A,): 1e-08
Max kernel norm (A;): 0.9




DeepSEA accurately predicts TF binding and
DNase hypersensitivity

Transcription factors

Reference
sequence
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seq)

1.00

0.75

0.50

—

QD
/
QXA

@

True positive rate

0.25

DeepSEA model

O 025 050 0.75 1.00
False positive rate

Mean AUC: 0.958



DeepSEA can perform in-silico mutagenesis
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Can DeepSEA predict known regulatory
variants?

GWAS catalog

I

DeepSEA predicted effects
$

ﬁ

Known variant |ACCGTCGGTATATCAGTCGGTATAGGC




Can DeepSEA predict known regulatory variants?

GWAS catalog

I Predict with classifier

Concatenated feature vector

ﬂrence

Other genome annotations Predicted TF binding Predicted TF binding
(evolutionary conservation) for reference allele for reference allele

1

Known variant |ACCGTCGGTATATCAGTCGGTATAGGC




DeepSEA accurately predicts known regulatory variants

GWAS Catalog (noncoding)
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Segmentation and genome annotation

Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes J, Noble WS. Nature
Methods 2012. Unsupervised pattern discovery in human chromatin
structure through genomic segmentation

Maxwell W Libbrecht, Oscar L Rodriguez, Zhiping Weng, Jeffrey A Bilmes,
Michael M Hoffman, William Stafford Noble. Genome Biology 2019. A
unified encyclopedia of human functional DNA elements through fully
automated annotation of 164 human cell types



Assay 2

Unsupervised machine learning is a way to find patterns
In a data set
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Segmentation and genome annotation (SAGA) algorithms
partition and label the genome on the basis of genomics data sets

Liver data sets

H3k36me3 ChIP-seq =
CTCF ChlIP-seq '
DNasel-seq

* Segmentation and genome annotation (SAGA)
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ChromHMM: Ernst, J. and Kellis, M. Nature Biotechnology, 2010
Segway: Hoffman, M et al. Nature Methods, 2012



Method: unsupervised probabilistic graphical model

L abel . .

H3K36me3
DNasel
CTCF
I
1-200 bp

(" )hidden random variable

{0 observed random variable Training: Expectation-Maximization (EM) algorithm




Full dynamic Bayesian network model
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What types of genomic elements did the algorithm find?



What types of genomic elements did the algorithm find?
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What types of genomic elements did the algorithm find?
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What biological phenomenon does each unsupervised
label correspond to?

Integer-label
annotation

0 1 0 2 3 2 3 2 0

Aﬂparison to known phenomena
E Genes Biological interpretation
0 = Quiescent

Genomics data = | = ENNANCE

2 = Promoter

SPRVPANTRTPYIUIIY e W o, SYOW s
3 = Gene body

18 = Novel type of element?



Unsupervised annotation discovers several types of
regulatory elements
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Unsupervised annotation discovers several types of
regulatory elements
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Unsupervised annotation discovers several types of
regulatory elements
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Cell

Annotations of hundreds of human cell types

* 164 human
cell types

- 1,615 genome-
wide assays

Label type
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Project option #1: Epigenome clustering

GM12878 data sets

H3K4me3
H3K4me
3K36me3
H3K27me3
H3K9me3
H3K27ac

T

Selected 1% of the genome, binned to 100bp resolution

* Your algorithm

Annotation Il e—— 1]

0

¢7 S 9 2 9 2

Evaluation: Predict RNA-seq gene expression
gene expression

0 1 2
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Ernst J, Kellis M. Nature Biotechnology 2015. Large-scale imputation
of epigenomic datasets for systematic annotation of diverse human
tissues.

Jacob Schreiber, Timothy Durham, Jeffrey Bilmes & William Stafford
Noble. Genome Biology 2020. Avocado: a multi-scale deep tensor
factorization method learns a latent representation of the human
epigenome
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- Many experiments have been performed, but still only a

[‘5 * fraction of possible experiments

127 Human Cell Types
—

SAessy 42

—
B Data Present

Five assays chosen to
be very informative:

H3K4me3
H3K4me1
H3K2/7me3
H3K9me3
H3K36me3

Tier 1 and 2 Cell Types

1,014 experiments performed out of a possible 3,048



346 cell types

Problem: Can we impute the output of missing

experiments?
- 316 assay typeS I Experiment
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Imputed data has high correlation with observed data
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Imputed data has high correlation with observed data

Observed peaks recovered with imputed signal

".II'

1.0

0.9
0

(ONV) sqOsyeadyoled

COWEDIEH
JEGSHEH
LOWBNEH
JEEINEH
JEQINGIH

EOWERNEH
EW/LOIEH
JESHETH
[PWOZAVH
LOWHLNEH
JESHVH

JEQZINGLH
JESTINECH
JEPIEH
Z’VIH
JESHVIH
ELENPH
JEPINEH
[PWPNEH
EIWIENEH
JEGNEH
JELINEH
JEZINGCH

(OWHRINEH
EoWpiNEH
COWPNEH

- o @ Ue
= = =

Ernst and Kellis. Nature 2015.



PromRecov (AUC at 0-5% FPR)

Imputed data recovers promoters and TSSs better
than observed data

b

—~ 0.016

Promoter recovery (2 KB TSS) with H3K4me3 signal Gene body recovery with H3K36me3 signal

0.014
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Ernst and Kellis. Nature 2015.
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arcsinh signal value

H3K4me3 in Chromosome 1
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Genomic Coordinate (kb)
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‘& Avocado performs well well genome-wide

MSE- | global 1obs 1imp Prom (Gene Enh

Chromlmpute | 0.113  0.941 1.09 0.3246 0.1494 0.3164
PREDICTD 0.1 1.76 0.897 0.2576 0.1295 0.267
Avocado 0.1 1.66 0.845 0.249 0.1295 0.26

MSE-global: Mean squared error (MSE) across the full length of the genome
MSE-10bs: MSE at the top 1% of genomic positions ranked by experimental signal
MSE-1imp: MSE at the top 1% of genomic positions ranked by imputed signal
MSE-Prom: MSE at promoter regions defined by GENCODE

MSE-Gene: MSE at gene bodies defined by GENCODE

MSE-Enh: MSE at enhancer regions defined by FANTOMS5
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Predicting phenotype from genotype

(GGenetic traits
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Genetic variation is driven by phylogeny
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There are far more features than labels for predicting
phenotype

104 individuals Ir———————— I {08 indvidun
1 Phenotype status 1 HANVIERES
ﬁ

10° genetic positions



AH Safari, N Sedaghat, H Zabeti, A Forna, L Chindelevitch, M Libbrecht.
Predicting drug resistance in M. tuberculosis using a long-term recurrent
convolutional network architecture. Proceedings of ACM-BCB 2021
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Drug resistant tuberculosis is a
global health problem

1 O mllllOn People got infected

15 mllllOn People died from TB

O . 5 m | I I |O n New resistance cases
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A gene burden-based method for predicting drug
resistance in TB.

O 1 Gene burden-based features

02 Long-term Recurrent Convolutional Network (LRCN)
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Combing a CNN and LSTM enables the model to take into
account local arrangement of genes

‘ ‘ > ‘ Output layer

Dense layer
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LSTM layer
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LSTM layer

Pooling layer

Pooling size = 3/
Kernel size = 4 I cee Conv. layer

(o)}

Filter size =

Pooling layer

Pooling size =3 / \

Kernel size = 8 I oo Conv. layer
Filter size =/ \
X: means # of mutations
X X X X X X X X ' . .
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An LRCN performs better than alternatives at a clinically-
relevant false positive rate

0-81 method
% ~s= | RCN
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Project option #2: Predict drug resistance in TB

S
O
3
-
E@ Drugs
SNPs =
<< O
0010010000 .. SRSSS..

0000010010 ..

Bacterial isolates

Gene ID 11122333333

Genotype Drug resistance



Speaking



- Content
- Visual aids

- Slides
- Schematics
- Data figures

- Delivery



Presentations should have a main thesis



Err on the side of too much background



Re-engage the audience using a home slide



Outline

- Introduction
- Methods

- Results
- Conclusion



Machine learning methods for the genotype-phenotype
relationship, gene regulation and epigenomics
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Text should be In full sentences



Text should be In full sentences

"Method A crash rate too high"



- Slide titles: Use a full sentence explaining the main point of the slide.
- Notation, acronyms: Re-introduce every time you use it.

-+ Animate In each slide element as you present it.

- Make every slide element legible (font size 18+)



Reduce text by translating it to schematics



Reduce text by translating it to schematics

A class of methods known as semi-automated genome annotation (SAGA)
algorithms are widely used to perform such integrative modeling of diverse
genomics data sets. These algorithms take as input a collection of genomics data
sets from a particular cell type. They output (1) a set of integer state labels, such
that each state label putatively corresponds to a type of genomic activity (such as
active promoter, active transcription or repressed region), and (2) a partition of
the genome and annotation of each genomic segment with one state label. These
methods are “semi-automated” because a human performs a functional
interpretation of the state labels after the annotation process. In this
interpretation step, the human assigns an interpretation term to each state
label, such as “Promoter” or “Repressed”, indicating its putative function.



Segmentation and genome annotation (SAGA) algorithms
partition and label the genome on the basis of genomics data sets

Liver data sets

H3k36me3 ChIP-seq =
CTCF ChlIP-seq '
DNasel-seq

* Segmentation and genome annotation (SAGA)
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ChromHMM: Ernst, J. and Kellis, M. Nature Biotechnology, 2010
Segway: Hoffman, M et al. Nature Methods, 2012



What biological phenomenon does each unsupervised
label correspond to?

Integer-label
annotation
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Aﬂparison to known phenomena
E Genes Biological interpretation
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Figures should make a point



Walk the audience through each figure
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What types of genomic elements did the algorithm find?
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What t
ypes of
genomi
Ic elements did the al
algorithm fi
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Practice your delivery



