Lecture 10:

Recurrent Neural Networks

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 1 8 Feb 2016




Administrative

- Midterm this Wednesday! woohoo!
- A3 will be out ~Wednesday
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http://mtyka.github.io/deepdream/2016/02/05/bilateral-class-vis.html
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http://mtyka.github.io/deepdream/2016/02/05/bilateral-class-vis.html
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

\ Vanilla Neural Networks
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

\ e.g. Image Captioning
image -> sequence of words
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

\ e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

\ e.g. Machine Translation
seq of words -> seq of words
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

/

e.g. Video classification on frame level
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Sequential
Processing
of fixed
Inputs

Multiple Object Recognition with
Visual Attention, Ba et al.
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Oliver N Schulte
this relieves the fixed/max input length problem


Sequential
Processing
of fixed
outputs

DRAW: A Recurrent
Neural Network For
Image Generation,
Gregor et al.
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Recurrent Neural Network
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Recurrent Neural Network

usually want to
predict a vector at
some time steps
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Recurrent Neural Network

We can process a sequence of vectors x by

applying a recurrence formula at every time step: y
hi|= fW(ht—la "L‘t)
new state / old state input vector at T
some time step
some function x

with parameters W
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fW(ht—la "L‘t)

Notice: the same function and the same set
of parameters are used at every time step. B

X —Pg—b <
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Oliver N Schulte
homogeneity


(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la fL't)

e |

h; = tanh(Wpphi—q + Wopay)

X Yt = Whyht
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Oliver N Schulte
-non-linear activation is applied to both memory and current input
-non-linear dependency on previous hidden state
- different from LSTM


Character-level y
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”
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Character-level
language model

example

Vocabulary:

[h,e,l,0]

Example training 1 - _ .

sequence. input layer g (1) ? (1)

“hello” 0 0 0 0
input chars: “n” e “qr I
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Character-level
language model

hi = tanh(Whphi—1 + Want)

example
vocabulary: ey | 53— 08 |+ 35 -2 25
[h,e,l,o] 0.9 0.1 -0.3 0.7
Example trainin T T T TW_Xh
ple training 1 0 0 0
sequence. input layer g (1) ? [1)
“hello” 0 0 0 0
input chars: “n” “@” i H
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Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars: ¢

Fei-Fei Li & Andrej Karpathy & Justin Johnson

W_hfl -0.3

1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 12
0.3 1.0
-0.1 » 0.3 >
0.9 0.1
1 0
0 1
0 0
0 0
‘h “g”

Lecture 10 - 21

8 Feb 2016




min-char-rnn.py gist: 112 lines of Python

Minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)

83D License

import numpy as np

'r').read()

data = open(
chars = list(s
data_size, vocab_size = len(data),
print 'data has %d characters, %d unique.
char_to_ix = { ch:i for i.ch in enumerate(chars) }
ix_to_char = { iich for i,ch in enumerate(chars) }

len(chars)
' % (data_size, vocab size)

hidden_size = 180
seq_length = 25
learning rate = 1e-1

wxh = np.random.randn(hidden_size, vocab_size)*e.a1
whh = np.random.randn(hidden_size, hidden_size)*n.e1
why = np.random.randn(vocab_size, hidden_size}®e.o1
bh = np.zeros( (hidden_size, 1))

by = np.zeros((vocab_size, 1))

def lossFun(inputs, targets, hprev):

inputs, targets are both list of integers

hprev is Wil array of initial hidden state
gradients on model parameters, and last hidden state

returns the loss

xs, hs, ys, ps = {}L {}, % @
-11 = np.copy(hprev)
]

t in xrange(len(inputs)):

for
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(Wxh, xs[t]) + mp.dot{whh, hs[t-1]) + bh)

ys[t] = np.dot(why, hs[t]) + by
np.exp(ys[t]) / np.sum(np.exp(ys

rem
-np.log(ps[t][targets[t], a1) oft

dWxh, gWhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(wny)
dbh, dby = np.zeros_like(bh), np.zeros_Like(by)
dhnext = np.zeros_like(hs[8])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1
dwhy += np.dot(dy, hs[t].T)
dby += dy
np.dot(why.T, dy) + dhnext
(1 - hs[t] * hs[t]) * dh
dnraw
np.dot(dhraw, xs[t].T)
np.dot(dhraw, hs[t-1].T)
np.dot (wnh.T, dhraw)
dparam in [dwxh, cwhh, dwhy, dbh, dby]

5, out=dparam) # clip to mitigate expl
dbh, dby, hs[len(inputs)-1]

for
np.clip(dparan, -5,
return loss, dwxh, dwhh, dwhy,

Fei-Fei Li & Andrej Karpathy & Justin Johnson

def sample(h, seed ix, n):

sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for

st time step
x = np.zeros((vocab_size, 1))

x[seed_ix] = 1
ixes = []

for € in xrange(n):
h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh}
¥ = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
p=p.ravel())

ix = np.random.choice(range (vocab_size),
x = np.zeros((vocab_size, 1))

x[ix] = 1

1ixes.append(ix)
return ixes

np=8 8
mixh, mWAh, mahy = np.zeros_like(wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by)
smooth_loss = -np.log(1.6/vocab_size)*seq_length

np.zeros_like(whh), np.zeros_like(why)

while True:
if prseq_length+1 >= len(data) or n == o:

hprev = np.zeros((hidden_size, 1)) R
p=0 f :1

inputs = [char_to_ix[ch] for ch in data[p:p:seq_length]]

targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 109

sample_ix = sample(hprev, inputs[e], 2@e)
txt = '".jein{ix_te char[ix] for ix in sample_ix)

print '--—-\n %s \n----' % (txt, )

loss, dwWxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
* 9.001

smooth_loss = smooth_loss * @.99a + loss

@: print 'iter %d, loss: %f' % (n, smooth_loss)

if n % 109

for param, dparam, mem in zip([wxh, whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dbyl,
[maxh, mWnh, mwny, mbh, mby]):
men += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8)

p += seq_length

n=1

(https://qgist.github.
com/karpathy/d4dee566867f8291f086)

8 Feb 2016

Lecture 10 - 22



https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086

min-char-rnn.py gist

Wininal character-level Vanilla RIN model. Written by Andre] Karpathy (gkarpathy)
asD License

import. numpy as np

mm

by = np.zeros( (vocab_size, 1)) # ou;

ot Sosun s, o, o) ' 2 Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)

inputs, targets are both list of integers.
hprev is Wt array of initial hidden state

e o s e reeter, nd s viin s 3 BSD License

. ys, ps = {1 {1 O
= v comythorev) 1 nnn

) o et s ) s 1 s 5 import numpy as np
1

. canh(np.dot (wih, XS[t]) + np.doE(whh, hs[t-1]) + bh)
by # u

S 7 | i 9ata 150
5 8 data = open('input.txt', 'r').read() # should be simple plain text file
5 chars = list(set(data))
€ data_size, vocab_size = len(data), len(chars)
ST N el g 11 print 'data has %d characters, %d unique.' % (data_size, vocabh_size)
sy 12 char_to_ix = { ch:i for i,ch in enumerate(chars) }
13 ix_to_char = { i:ch for i,ch in enumerate(chars) }

40z (10, x) + np.dot (i, B) + h)

w, 0+ by

7 . sun(op.ex0(1))
ab_size), pop.ravel))
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min-char-rnn.py gist e 1 .
Initializations

# hyperparameters
hidden_size = 100 # size of hidden layer of neurons

17 seq_length = 25 # number of steps to unroll the RNN for {:)
g 18 learning_rate = le-1

# model parameters

> Wxh np.random.randn({hidden_size, vocab_size)*®.01 # input to hidden
Whh np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden

i : 23  Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output

T 24  bh = np.zeros((hidden_size, 1)) # hidden bias

rs, and last hidden state

25 by = np.zeros((vocab_size, 1)) # output bias
target chars: “e” “e “r “o?
ol 1.0 0.5 0.1 0.2
2.2 0.3 0.5 15
output layer 30 W e il
4.1 12 11 2.2
T T T TW hy
" 0.3 1.0 0.1 -0.3
reca”. hidden layer | .01 0.3 05 W_hh s
0.9 0.1 -0.3 0.7
T T T TW_xh
1 0 0 0
input layer 0 5 ; :
0 0 0 0

o,

input chars:  “h”
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Oliver N Schulte
explain the unrolling


min-char-rnn.py gist .

import numpy as np

a1 n, p=2a 8
22 mwxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
83 mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
24  smooth_loss = -np.log(1.6@/vocab_size)*seq_length # loss at iteration ©
while True:
B # prepare inputs (we're sweeping from left to right in steps seq_length long)
“é;:::Tj;:WM: ) 87 if p+seq_length+1 >= len(data) or n == @:
e hprev = np.zeros((hidden_size, 1)) # reset RNN menory
. ’ p =0 # go from start of data

i 90 inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]

. 91 targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

xs, hs, ys, ps = (0 0, O O
ns[-1]'= np.copy(prev)

1= p.dot(hy, hs[c]) + by + unnormalized
np.exp(ys[t]) / np.sun(np.exp(ysLt])) ©

zeros_Like(bh), np.zeros_like(by)
eros_Like(hs[o])
a(xr

93 # sample from the model now and then
1 if n % 100 == @:
sample_ix = sample(hprev, inputs[@], 200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n=--=' % {txt; )

e}
(&5

return loss, duxt
et sample(n, seed_ix, )
sample a sequence of incegers fron the model

State, seed_ix is seed lotcer for First tine step

w

# forward seq_length characters through the net and fetch gradient

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * 0.001

if n % 100 == @: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress

# perform parameter update with Adagrad

for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dwWxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mWhy, mbh, mby]):

aatalp:p a1
datape1:piseq_lengtheil]

mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt({mem + 1e-8) # adagrad update

111 p += seq_length # move data pointer
112 n += 1 # iteration counter
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min-char-rnn.py gist

Mininal character-level vanilla RNN model. Written by Andrej Karpathy (Gkarpathy)
asD License

import numpy as np

= np.zeros( (vocan_size, 1)

def lossrun(inputs, targets, hprev):

inputs, targets are both list of integers.
hprev is Wt array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = (0 0, O O
ns[-1]'= np.copy(prev)

xrange(Len(inputs))

1= p.dot(hy, hs[c]) + by + unnormalized
np.exp(ys[t]) / np.sun(np.exp(ysLt])) ©

samle a sequence of ncegers fron the model
State, seed_ix is seed lotcer for First tine step

aatalp:p a1
datape1:piseq_lengtheil]

whn, uny, b, byl,
Lawcn, cun, auny, abn, by,
o, st sy, oy

dparan / np.sarc(nen + 16-8) + sgra poare

Main loop

n, p=2a 8

mwWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh}), np.zeros_like(by) # memory variables for Adagrad
smeooth_loss = -np.leog(1l.6/vocab_size)*seq_length # loss at iteration @

while True:

# prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seqg_length+1l >= len(data) or n == @:
hprev = np.zeros(({hidden_size,1)) # reset RNN memory
p = @ # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

# sample from the model now and then

if n % 100 == @:
sample_ix = sample(hprev, inputs[@], 200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n=--=' % {txt; )

# forward seq_length characters through the net and fetch gradient

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * 0.001

if n % 100 == @: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress

# perform parameter update with Adagrad
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt({mem + 1e-8) # adagrad update

p += seq_length # move data pointer
n += 1 # iteration counter
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https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086

min-char-rnn.py gist

Mininal character-level vanilla RNN model. Written by Andrej Karpathy (Gkarpathy)
asD License

import numpy as np

= np.zeros( (vocan_size, 1)

def lossrun(inputs, targets, hprev):

inputs, targets are both list of integers.
hprev is Wt array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = (0 0, O O
ns[-1]'= np.copy(prev)

for t in xrange(len(inputs))
€] = np.zeros((vocab_size, 1)) # encode in 1-of-k represencaion

1 = np.doc(wny, hs[c]) +
nB.explysLe]) / mp.s

by # unnormalize
un(np.exp(ys(t]))

(1h), np.zeros_Like(uhy)

samle a sequence of ncegers fron the model
State, seed_ix is seed lotcer for First tine step

whn, uny, b, byl,
Lawcn, cun, auny, abn, by,
o, st sy, oy

dparan / np.sarc(nen + 16-8) + sgra poare

Main loop

n, p=2a 8
mwWxh, mwhh, mWwhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh}), np.zeros_like(by) # memory variables for Adagrad
smeooth_loss = -np.leog(1l.6/vocab_size)*seq_length # loss at iteration @
while True:
# prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seqg_length+1l >= len(data) or n == 8:
hprev = np.zeros(({hidden_size,1)) # reset RNN memory
p = @ # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

# sample from the model now and then

if n % 100 == @:
sample_ix = sample(hprev, inputs[@], 280)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '-=--\n:%s \n===='" % {txt; )

# forward seq_length characters through the net and fetch gradient

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * 0.001

if n % 100 == @: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress

# perform parameter update with Adagrad
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt({mem + 1e-8) # adagrad update

p += seq_length # move data pointer
n += 1 # iteration counter
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min-char-rnn.py gist

Mininal character-level vanilla RNN model. Written by Andrej Karpathy (Gkarpathy)
asD License

import numpy as np

= np.zeros( (vocan_size, 1)

def lossrun(inputs, targets, hprev):

inputs, targets are both list of integers.
hprev is Wt array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = (0 0, O O
ns[-1]'= np.copy(prev)

xrange(Len(inputs))

1= p.dot(hy, hs[c]) + by + unnormalized
np.exp(ys[t]) / np.sun(np.exp(ysLt])) ©

samle a sequence of ncegers fron the model
State, seed_ix is seed lotcer for First tine step

aatalp:p a1
datape1:piseq_lengtheil]

whn, uny, b, byl,
Lawcn, cun, auny, abn, by,
o, st sy, oy

dparan / np.sarc(nen + 16-8) + sgra poare

Main loop

n, p=2a 8
mwWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh}), np.zeros_like(by) # memory variables for Adagrad
smeooth_loss = -np.leog(1l.6/vocab_size)*seq_length # loss at iteration @
while True:
# prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seqg_length+1l >= len(data) or n == 8:
hprev = np.zeros(({hidden_size,1)) # reset RNN memory
p = @ # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

# sample from the model now and then

if n % 100 == @:
sample_ix = sample(hprev, inputs[@], 200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n=--=' % {txt; )

# forward seq_length characters through the net and fetch gradient

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * 0.001

if n % 100 == @: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress

# perform parameter update with Adagrad
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt({mem + 1e-8) # adagrad update

p += seq_length # move data pointer
n += 1 # iteration counter
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min-char-rnn.py gist

Mininal character-level vanilla RNN model. Written by Andrej Karpathy (Gkarpathy)
asD License

import numpy as np

= np.zeros( (vocan_size, 1)

def lossrun(inputs, targets, hprev):

inputs, targets are both list of integers.
hprev is Wt array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = (0 0, O O
ns[-1]'= np.copy(prev)

for t in xrange(len(inputs))
[£] = np.zeros((vocan_size,1)) # encode in 1-0f -k representatior

1 = np.doc(wny, hs[c]) +
nB.explysLe]) / mp.s

by # unnormalize
un(np.exp(ys(t]))

(1h), np.zeros_Like(uhy)

samle a sequence of ncegers fron the model
State, seed_ix is seed lotcer for First tine step

whn, uny, b, byl,
Lawcn, cun, auny, abn, by,
o, st sy, oy

dparan / np.sarc(nen + 16-8) + sgra poare

Main loop

n, p=2a 8
mwWxh, mwhh, mWwhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh}), np.zeros_like(by) # memory variables for Adagrad
smeooth_loss = -np.leog(1l.6/vocab_size)*seq_length # loss at iteration @
while True:
# prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seqg_length+1l >= len(data) or n == 8:
hprev = np.zeros(({hidden_size,1)) # reset RNN memory
p = @ # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

# sample from the model now and then

if n % 100 == @:
sample_ix = sample(hprev, inputs[@], 200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n=--=' % {txt; )

# forward seq_length characters through the net and fetch gradient

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * 0.001

if n % 100 == @: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress

# perform parameter update with Adagrad
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt{mem + 1e-8) # adagrad update

p += seq_length # move data pointer
n += 1 # iteration counter
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min-char-rnn.py gist

Wininal character-level Vanilla RIN model. Written by Andre] Karpathy (gkarpathy)
asD License

import numpy as np

don. randn(hidden_size, hidden_size)*0.01 * I

‘0s((vocab_size, 1))

(inputs, targets, hprev):

inputs, targets are both list of integers
hprev is Wt array of initial hidden state
returns the loss, graients on model parameters, and last hidden state

s, ps = 0 00 (1 O
1'= np.copy(hprev)

for t in xrange(len(inputs))
[] = mp.zeros((vocan_size, 1) #
xs[t][inputs(e]] = 1
hS[t] = np.canh(np.dot(wxh, Xs[t]) + np.dot(uhh, hs[t-1]) + bh)
YS[t] = np.dot(uny, hs[c]) + by Lized 1o bilici
BS[t] = np.exp(ys[t]) / np.sun(np.exp(ys[t])) #
loss += -np. log(ps[r](cargets(c],e]) # so e

ixn, duhh, dwhy = np.zeros like(wxh), np.zeros like(uhh), np.zeros like(uhy)
e . zeros_Like(by)

whn, uny, b, by],
Lawan, cun, auny, abn, by,
o, st by

dparan / np.sarc(nen + 16-8)  sigra pdace

Loss function
- forward pass (compute loss)
- backward pass (compute param gradient)

def lossFun{inputs, targets, hprev):
inputs, targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state
xs, hs, ys, ps = {}, {}; {}, {}
hs[-1] = np.copy(hprev)
loss = @
# forward pass
for t in xrange(len(inputs))
xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation

o

3
37
20

39 xs[t][inputs[t]] = 1
40 hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
41 ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars

I |
Bfles

ps[t] = np.exp(ys[t]) 7/ np.sum(np.exp(ys[t])) # probabilities for next chars
loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
# backward pass: compute gradients going backwards
dwxh, dwhh, dwhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[®])
48 for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
) dy[targets[t]] -= 1 # backprop into y
5 dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(Why.T, dy) + dhnext # backprop into h
dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity
dbh += dhraw
dwxh += np.dot(dhraw, xs[t].T)
dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(Whh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip{dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]
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min-char-rnn. Py ngt def lossFun(inputs, targets, hprev):

Kiniand charscer-leve vaniLia B mceL.. urian by dre Karpachy (karpachy) mnn

inputs, targets are both list of integers.

hprev is Hx1 array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state

mun

xs, hs, ys, ps = {}, {}, {}, {J
hs[-1] = np.copy(hprev)

loss = ©

# forward pass

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
xs[t][inputs[t]] = 1

hs[t] np.tanh(np.dot(wWxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state

| ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
loss += -np.log(ps[t][targets[t],@]) # softmax (cross-entropy loss)

/
tanh(Wyphi—1 + Wypzy)
Whyht
Softmax classifier
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min-char-rnn_py gist 44 # backward pass: compute gradients going backwards
2 15 dwxh, dwhh, dwhy = np.zeros_like(wWxh), np.zeros_like(Whh), np.zeros_like(Why)

: dbh, dby = np.zeros_like(bh), np.zeros_like(by)
e 17 dhnext = np.zeros_like(hs[@])
. : for t in reversed(xrange(len(inputs))):
49 dy = np.copy(ps[t])
5€ dy[targets[t]] -= 1 # backprop into y
dwhy += np.dot(dy, hs[t].T)

acter-level vanilla RuN model. Written by Andrej Karpathy (gkarpathy)

52 dby += dy

o e e e 53 dh = np.dot(why.T, dy) + dhnext # backprop into h

dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity
dbh += dhraw

dwxh += np.dot(dhraw, xs[t].T)

L ps = 0, 00 O
p-copy(hprev)

dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(wWhh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients

return loss, dwWxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

target chars: “e” G “@r “o"
1.0 0.5 0.1 0.2
22 0.3 0.5 -1.5
output layer 30 ko o i
4.1 12 -1.1 22
T T I T W_hy

0.3 1.0 0.
hidden layer | -0.1 —— 0.3 —> -05 |—> 0.9
-0

recall: e

input layer

OO—\O‘

@,

input chars:  “h”
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min-char-rnn.py gist

nilla R 1 en by Andrej Karpathy (@karpathy)

def sample(h, seed_ix, n):
sample a sequence of integers from the model
h is memory state, seed _ix is seed letter for first time step
X = np.zeros((vocab_size, 1))
69 X[seed_ix] = 1
ixes = []
7] for t in xrange(n):
h = np.tanh(np.dot(Wxh, X) + np.dot({Whh, h) + bh)
v np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())

X = np.zeros((vocab_size, 1))
77 ¥[x] = 1
ixes.append(ix)
return ixes
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Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.
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"Tmont thithey" fomesscerliund
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sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
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l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage Tiving were to it beloge, pavu say fTalling misfort

how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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BANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upen my soul,
Breaking and strongly should be buried;, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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For @,._, ., where £,,, = 0, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then I/ — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=S8pec(R)=U xx Uxx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xg U — V. Consider the maps M along the set of points
Schpppy and U — U is the fibre category of § in U in Section, 77 and the fact that
any U affine, see Morphisms, Lemma 77, Hence we obtain a scheme S and any
open subset W < U in Sh(G) such that Spec(R') — S is smooth or an

U= U U, xs, U;
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where x,2', 5" € §" such that Ox . — O, ., is

separated. By Algebra, Lemma 77 we can define a map of complexes GLg/ (2/5")
and we win.

To prove study we see that F|y is a covering of X7, and T; is an object of Fx s for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M®*=1° ®SP‘-'C(H Og.. — IKI}-)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7P ¢, (Sch/S) ryps

and

V =T(S.0) — (U, Spec(4))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme 5.

Proof. See discussion of sheaves of sets. [

The result for prove any open covering follows from the less of Example 77, It may
replace S by Xpaces.érate Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??7. Namely, by Lemma ?7 we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) =T (X, Gx_ox ).
When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U/ and a
surjective étale morphism U/ — X. Let UNU =[], » Ui be the scheme X over

i=l....,

S at the schemes X; — X and U = lim; X;. O

The following lemma surjective restrocomposes of this implies that F,, = F,, =

}-X,,‘ 0+

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fyxyg. Set T =
J1 CI. Since I™ C I™ are nonzero over ip < p is a subset of T, p 0 As works.

Lemma 0.3. In Situation 77. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (7?). On the
other hand, by Lemma 77 we see that
D(Ox+) = Ox(D)

where K is an F-algebra where d,,; 1 is a scheme over S. a
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Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Op, = 0x(L)

Proof. This is an algebraie space with the composition of sheaves F on Xy, we
have

Ox (F) = {morphy xo, (G, F)}
where G defines an isomorphism F — F of O-modules. |
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, a

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complexr.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a
b: X =2Y' 2 Y aY 2 Y xxY 2 X

be a morphism of algebraic spaces over S and Y.

scheme covering. Let

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. a

This since F € F and = € G the diagram

S§— =

|

3

Ox

AN

gor,

Spec(iy) Morgees d(iﬁfl\*_‘.),,k .G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
® Oy is a sheaf of rings.
O

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraie space. The property F is a finite morphism of algebraie stacks. Then the
cohomology of X is an open neighbourhood of {7, a

Proof. This is clear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxe — Fr -UOxyp,) — O%10x,(0%,)
is an isomorphism of covering of Qy,. If F is the unique element of F such that X
is an isomorphism,
The property F is a disjoint union of Proposition ??7 and we can filtered set of
presentations of a scheme O y-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. O

If F is a finite direct sum Oy, is a closed immersion, see Lemma 77, This is a
sequence of F is a similar morphism.
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O This repasiony

torvalds f linux

Linux kemel source tree

520,037 commits 1 branch 420 reloases

Explore Gist Blog Help

Slarpatny +. ( & B

@ Watch - 3,711 4 Star 23,054 Y Fork 8141

i

5,039 coniributors Coda

m §¥ branch: master - linux / +

Merge branch 'drm-fixes' of git:Vpeople freadeskiop.orgi~airiedlinu ==

§ Td
Pull requesis

A torvaids authored 9 hours ago latest commit 4b1786927d [= ]
Pulsa
B Documentation Marge gitigit kemel org/puivscmdlinuxkamaligitinabianget-pending b clays ago
B arch Mearga branch xB&-urgant-ior-inus’ of giegi_ kamal.ong/pubdecmd B 8y ago i
Graphs
B block ock: aiscand bdi_unragisten) in favour of bdl_desinoyg) 9 days ago
B cryplo Marge git:ight kemelorgipubdscmilinuekemeligitherberticryplo-2.6 10 days ago HTTPS clona UAL
BN drivars Merga branch ‘dim-fixes’ of gitpeople. freadeskiop.ong/~alradinLx 8 hours ago https://github.c | g
B firrmware fiermwaresihextw.c: restors missing default in switch statemant 2 months ago You can clona with HTTES.
] Gubrees
. fs vis: read file_handie only onca in kandle_fo_path 4 days aga SSH, or Subversion. @
M includa Marge branch ‘peri-urgant-lor-linus’ of gitigit kemal.orgipubdscm/ B day ago = Clone in Deskiop
S init iriit: fix regression by supporting devices with majorminoroffset fo a month aga "-T-' Downioad Z1P
e LT [ P oY1 (e T TR [ Y T Ty Soppeyey s | - TR
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static void do_command(struct seq file *m, wvoid *v)

{
int column = 32 << (cmd[2] & 0x80); Generated

if (state)

emd = (int)(int state * (in B(&ch->ch flags) & Cmd) ? 2 : 1); (:; (j
else CO e

seq = 1;
for (i = 0; 1 < 16; i++) {
if (k & (1 =< 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & Ox00000000ff£f£ffff8) & 0x000000£f) << B;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}
subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);

Fob Almnr mres wrands o d=T1 3 oy o] iy J 4= Aleary
. Wani co ellperacely pu L i deviCE

control check polarity(&context, wval, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");
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-1
VB EE lot adc pack
{ NOCOMP AFSR(0, load)

fdafine STACE DDR(Evoal Fune

gerina SIACKR DDR[{TYPpea ) fIunc
fdafina SWAF ALLOCATE(nr) (&)
¥ na amulate sigs({) arch get unaligned child()
#d ne access rw(TST) asm volatile( "mowd %%esp, &0, 3 (0)

if ¢ type & DO READ)

static void stat PC_SEC _ read mostly offsetof(struct seg argsgueus, %
pC>[1]):

statiec woid
os_prefix(unsigned long sys)
{

fifdef CONFIG PREEMPT
PUT_PARARM RAID(Z, sel) = get state state();
set_pid sum((unsigned long)state, current_state_str(),

(unsigoned long)=1=>1lr full; low;
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Searching for interpretable cells

lter file ld"SWString rEpres@ntation from WEer-space
pAckstring(Wllid *Mbufp, sizel: NFEmE., s¥zel: | Do)

j plﬂ:lr-tud :r g fields, PRTHINNX
TEElid Le

[Visualizing and Understanding Recurrent Networks, Andrej Karpathy*, Justin Johnson*, Li Fei-Fei]
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Searching for interpretable cells

guote detection cell
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Searching for interpretable cells

Cell sensitive o position in line:

ThiErEa s importance of The crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of acrtion--the one Kutuzov and the general mass of the army
demanded--namely, simply to fTfollow the enemy up The French crowd Tled
At a continually increasing speed and all its energy was directed to
reaching its goal. It Tled like a wounded animal and it was impoassibles
o block 1tCs path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges When the bridges
broke down, unarmed soldiers, people from Moscow and women wWwith children
Wwho were with the French transport, all--carried on by wvis inertiae--
pressad fTforward 1into boats and into the ice-covered water and didinety

surrender.

line length tracking cell
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Searching for interpretable cells

if statement cell
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Searching for interpretable cells

quote/comment cell
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Searching for interpretable cells

fdef CONFIG_AUDITSYSCALL
atic inline int audit_match_class_bits(int class, u32 *"mask)

(1 = 8; 1 < AUDIT_BITMASK_SIZE; i++)
10i]1)

code depth cell
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Image Captioning

“straw” “hat” END

START HStraW" Hhatll

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick
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Recurrent Neural Network
“straw” “hat” END

START llstrawll Hhat"

Convolutional Neural Network
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test image




| image |

. conv-64
| conv-64

test image

 maxpool

conv-128

|

|

I conv-128
" maxpool

I- conv-256

i. conv-2 5§ .

 maxpool

. conv-512

I conv-512

I maxpool
conv-512

conv-5 12_’

maxpool

. FC-4096
. FC-4096
. FC-1000
. softmax



| image |

. conv-64
| conv-64

test image

 maxpool

conv-128

|

L L5
I conv-128
" maxpool

I- conv-256

i_' conv-256

 maxpool

. conv-512
I conv-512
I maxpool
!_ conv-512
| oomr-Sii_’
. maxpool
. FC-4096
. FC-4096

F 0
sofgax




| image |

 conv-64

| conv-64

test image

 maxpool

conv-128

|

|

I conv-128
" maxpool

I- conv-256

i. conv-2 5§ .

 maxpool

. conv-512
I conv-512
I maxpool
~ conv-512

|
|
| conv-5 12_’
|
|

. maxpool
. FC-4096 0

<STA
. FC-4096 57

<START>



| image |

. conv-64 _

test image

' conv-64

~_maxpool

. conv-128

 conv-128
~ maxpool

[ com:-256

: — y0
~ conv-256

—_— T before:

| Z::::: h = tanh(Wxh * x + Whh * h)
sl i
_conv-512_ T NnOw:

h =tanh(Wxh * x + Whh * h + Wih * v)

——— x0
. FC-4096 <STA

<START>



test image

y0

_comes12 | sample!
ho

- maxpool

. FC-4096 ”

| o <STA straw
I_ FC-4096 —

<START>



| image |

. conv-64

test image

| conv-64
 maxpool

. conv-128

| conv-128
| maxpool

~ conv-256 yO

y1
| Wt eV

—_— L]

i conv-512

' conv-256

. conv-512

I mgggnoi hO ¥ h1

' convs12 T T
~maxpool
. FC-4096 0

| FC '4695 <STA straw
e RT>

<START>



test image

y0 y1

— P

 convs12 sample!

' convs12 T T
 maxpool
. FC-4096 0

[ N <STA straw hat
I_ FC-4096 Y

<START>



| image |

 conv-64

| conv-64

test image

 maxpool

. conv-128

I conv-128
" maxpool

I- conv-256

’ y0 y1 y2
| conv-256

—_— L 11

. conv-512

I conv-512

. maxpool

x0

<STA straw hat
FC-4096 - ST

<START>



| image |

. conv-64 _
i conv-64
~_maxpool
|

conv-128

conv-128
maxpool

I conv-256

' conv-256
. conv-512
. conv-512

~_maxpool

test image

\ sample

<END> token

y0 y1 y2
ho | h1 h2

=> finish.

x0
<STA
RT>

straw

hat

<START>



Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

Microsoft COCO

aun IKer pump IS 5 ?_I_I"If:EE raton. I "

- [Tsung-Yi Lin et al. 2014]
MSCOCO.0rg

currently:
~120K images
~5 sentences each


http://mscoco.org
http://mscoco.org

‘man in black shirt is playing “‘construction worker in orange “twao young girls are playing with "boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard.”
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Preview of fancier architectures

RNN attends spatially to different parts of images while generating

each word of the sentence:

-~

1. Input 2. Convolutional
Image Feature Extraction

14x14 Feature Map

A |
bird |
flying
over

a

body
of
water

3. RNN with attention 4. Word by

over the image

word

generation)

Show Attend and Tell, Xu et al., 2015
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RNN: !

-1
hi = tanh W' (Eg ) d
t—1 > > > >
h € R™ Wt [n x 2n]

depth

time
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Oliver N Schulte
go back one step in time, one field in  space


RNN:

-1 ®
ht = tanh W (%
hi—1
h € R™ Wt [n x2n]
LSTM: W [4n x 2n]
3 sigm
fl _ | sigm | (hg—l)
0 sigm hi_q
g tanh
ci=f®ci_l+i®g depth

h; = 0 ® tanh(c})

Fei-Fei Li & Andrej Karpathy & Justin Johnson

time

Lecture 10 - 68
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Oliver N Schulte
looks a lot like a tableau


output

hidden

O O O O
A i
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

()
vector from
below (x)
X sigmoid | — | i
h sigmoid | — | f
W () sigm
vector from sigmoid | —— | o Fl_ [siem| (b
before (h) 0 sigm ht—l
tanh | — | g g tanh
E
fOd_1+idg
4n x 2n 4n 4*n b .
hl = 0 ® tanh(c})
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Oliver N Schulte
is n the input?


Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state c

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 71 8 Feb 2016


Oliver N Schulte
curent cell = previous cell x forget + new input x input gate


Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell

state c
() (+) -
() sigm
f| _ |sigm W e
0 sigm B
f | g g tanh

a=fOcq+iog [
hl = 0 ® tanh(c})
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Oliver N Schulte
what is this operation?


Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state c

QD (+) .
co

sigm

s@gm Wi (h?‘l)
sigm hi_ 4
tanh

¢ =f0c_1+i0g
hl = 0 ® tanh(c})

I

S~ O =,

T =

8 Feb 2016
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Oliver N Schulte
new cell state

Oliver N Schulte
new hidden state


Long Short Term Memory (LSTM) A higher layer, or

[Hochreiter et al., 1997] prediction

cell
state c

0 0 :
C
tanh 1 sigm
CD £ _ | sigm W hi_l
0 sigm B
g tanh
(O

a=fOc_1+i0g
hl = 0 ® tanh(c)

8 Feb 2016
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Oliver N Schulte
input, forget, output gates give numbers between 0 and 1


LSTM one timestep I one timestep

cell
state c

)
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Oliver N Schulte
cell state does not depend on hidden state - like second hidden stream


state

RNN . f . f ' f

f /L f /L f
LSTM (+) () .

(ignoring
forget gates)
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Oliver N Schulte
f maps hidden state, input to hidden state

Oliver N Schulte
f adds previous state (cell) to input gate to get new state


34-layer plain 34-layer residual

Recall:

“PlainNets” vs. ResNets
ResNet is to PlainNet what LSTM is to RNN, kind of.
| 7x7ch£, 64,/2 | [ 7« cm:\:, 64,/2 |
poti:IZ pool, /2 « Plaint net ¢ Residual net

3x3 conv, 64 3x3 conv, 64 x
7 17 X 1 A"
3x3 conv, 64 3x3 conv, 64 ——
2 weight layer WRASHE RayCE
3x3 conv, 64 3x3 conv, 64 any two >
relu i :
v \ 4 stacked layers v relu F(X) h 4 identity
3x3 conv, 64 3x3 conv, 64 .
- weight layer weight layer X

3x3 conv, 64 3x3 conv, 64

H(x) lrelu H(x)=F(x)+x

3x3 conv, 128, /2

v

3x3 conv, 128
\ 4

3x3conv,128,/2 | 5
v y

I
I
I
I
I
| 3x3cony, 64
I
I
I
|

I |
I |
I |
I |
I |
[ 303 c:I.v, 64 |
I |
I |
| |
I |

3x3 conv, 128 3x3 conv, 128
v 4

3x3 conv, 128 3x3 conv, 128
h 2
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Understanding gradient flow dynamics
Cute backprop signal video: http://imgur.com/gallery/vaNahKE )

5 # dimensionality of hidden state
58 # number of time steps
= np.random. randn(H, H)

# forward pass of an RNN (ignoring inputs x)
hs = {}

ss = {}

hs[-1] = np.random. randn(H)

for t in xrange(T):

ss[t] = np.dot(Whh, hs[t-1])
hs[t] = np.maximum({&, ss[t])
# backward pass of the RAN
dhs = {}
dss = {}

dhs[T-1] = np.random.randn(H) # start off the chain with random gradient
for t in reversed{xrange(T}):
dss[t] = (hs[t] = @) * dhs[t] # backprop through the nonlinearity
dhs[t-1] = np.dot{Whh.T, dss[t]) # backprop intc previous hidden state
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http://imgur.com/gallery/vaNahKE
Oliver N Schulte
check this out


Understanding gradient flow dynamics

5 # dimensionality of hidden state
58 # number of time steps ) ) ) ) )
= np.random. randn(H,H) if the largest eigenvalue is > 1, gradient will explode

if the largest eigenvalue is < 1, gradient will vanish

# forward pass of an RNN (ignoring inputs x)
hs = {}
ss = {}
hs[-1] = np.random. randn(H)
for t in xrange(T):
ss[t] = np.dot(Whh, hs[t-1])
hs[t] = np.maximum({&, ss[t])

# backward pass of the RAN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn(H) # start off /Ahe chain with random gradient
for t in reversed{xrange(T}):
dss[t] = (hs[t] = @) * dhs[t] # bgflkprop through the nonlinearity
dhs[t-1] = np.dot{Whh.T, dss[t]) # backprop intc previous hidden state

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]
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Understanding gradient flow dynamics

5 # dimensionality of hidden state
58 # number of time steps ) ) ) ) )
= np.random. randn(H,H) if the largest eigenvalue is > 1, gradient will explode

if the largest eigenvalue is < 1, gradient will vanish

# forward pass of an RNN (ignoring inputs x)
hs = {}

ss = {}

hs[-1] = np.random. randn(H)

for t in xrange(T):

s5[t] = np.dot(whh, hs[t-1]) i i i i i
i B o el R can control exp!od_lng w_|th gradient clipping
| can control vanishing with LSTM
# backward pass of the RAN
dhs = {}
dss = {}

dhs[T-1] = np.random.randn(H) # start off /Ahe chain with random gradient
for t in reversed{xrange(T}):

dss[t] = (hs[t] = @) * dhs[t] # bgflkprop through the nonlinearity
dhs[t-1] = np.dot{Whh.T, dss[t]) # backprop intc previous hidden state

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]
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Oliver N Schulte


LSTM variants and friends Recurrant Network Archiestures,

Jozefowicz et al., 2015]

ut ‘,':c; beiymbo .
=" [LSTM: A Search Space Odyssey, s
Greff et al., 2015] z = sigm(Weaz, +b,)
— e e ro= sigm({Wexy + Whehe +5)
Y - hiya = tanh(Wig(r © h) + tanh{r,) + b,) & 2
, ; + h®1-2z)
2 GRU [Learning phrase MUT2:
oS representations using rnn encoder- : = sigm(Wazs+ Wishe +b.)
% decoder for statistical machine R GelE W)
translation, Cho et al. 2014] Busz: = tanh[Hm,{: he) + Wehze + be) © 2
+ = {1 —z)
re = sigm(Wieze + Whehi—1 + b;)
MUTS3:
- A F X
:’;f —_— ‘51!‘.[‘1"]1(1‘1”;{3.1?1‘_ —I_ I’{‘ hzht—l + bz) = f'i'igm“rle'e + Wi t:i.llh{.l'!g}-l-f.l,_}
hy = tanh(ﬁ’rxh:rf + Whn(r: ® he—1) + by) ro= sigm(Waz + Wichs + be)
o hipy = tanh(Whn(r © b)) + Wepzy +0y) @ 2
hy = Oht—1+(1—2)O N + he@(1—2)
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Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’'t work very well
- Common to use LSTM or GRU: their additive interactions

improve gradi

(@

flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.
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how?


