Software Refactoring: Investing in Software Quality

Rob Cameron

Computing Science 275
School of Computing Science
Simon Fraser University

October 18, 2021

Rob Cameron Refactoring



Refactoring: Improving Software Maintainability

Software Refactoring

Refactoring is the process of modifying a software code base to
improve quality while maintaining functionality intact.

Rob Cameron Refactoring



Refactoring: Improving Software Maintainability

Software Refactoring

Refactoring is the process of modifying a software code base to
improve quality while maintaining functionality intact.

<

Refactoring Goals

@ Readability: making software easier to understand.

@ Maintainability: making software easier to change.

@ Reusability: making software modules suitable for different
purposes.

@ Adaptability: making software amenable to changing use
cases.

Rob Cameron Refactoring



Refactoring Needed: The Problem of Bit Rot

Software systems that go through many versions over time often
see a gradual detioration of code quality: bit rot.

Rob Cameron Refactoring



Refactoring Needed: The Problem of Bit Rot

Software systems that go through many versions over time often
see a gradual detioration of code quality: bit rot.

v

Example: Code Bloat

o New feature required similar to existing feature.

o Existing feature implementation is cloned and altered.
@ Result: code duplication, bit rot.

N

Rob Cameron Refactoring



Refactoring Needed: The Problem of Bit Rot

Software systems that go through many versions over time often
see a gradual detioration of code quality: bit rot.

Example: Code Bloat

o New feature required similar to existing feature.

o Existing feature implementation is cloned and altered.
@ Result: code duplication, bit rot.

Example: Shotgun Maintenance

o New feature requires new logic in many places.

@ Shotgun pellets throughout the code
if (NewFeature) { ... }

@ Result: increasing complexity, bit rot.

Rob Cameron Refactoring



Refactoring Needed: Maintenance is Hard

Maintenance Activities

@ Bug fixes.
@ New features: adds complexity.

@ Adapting to new systems: adds complexity.

Rob Cameron Refactoring



Refactoring Needed: Maintenance is Hard

Maintenance Activities
@ Bug fixes.
@ New features: adds complexity.

@ Adapting to new systems: adds complexity.

Maintenance Complexity

@ Maintainers not original designers.

Maintainers may be junior programmers.

°
@ Code understanding is hard.

@ Time pressure for fixes, new features.
°

Result: bit rot.

Rob Cameron Refactoring



Refactoring as Investment

Refactoring in Maintenace

@ Focus is improving quality.

@ Reduce code bloat and complexity without adding features.
@ Bug fixes are incidental.

o No particular bugs are the target of refactoring.
e Refactoring may identify and remove bugs as part of code
clean-up.

Rob Cameron Refactoring



Refactoring as Investment
Refactoring in Maintenace

@ Focus is improving quality.
@ Reduce code bloat and complexity without adding features.

@ Bug fixes are incidental.

o No particular bugs are the target of refactoring.
e Refactoring may identify and remove bugs as part of code
clean-up.

Refactoring Cost-Benefit Tradeoff

Refactoring is an investment of time for future benefit.

@ Reduced future cost of bug fixes.

@ Reduced future cost of new feature additions.

@ Ability to reuse refactored components in future systems.
o

Increased ability to adapt systems for new applications.

Rob Cameron Refactoring



Test-Driven Refactoring

Test Cases First!

@ Test cases validate current functionality.

@ Refactoring steps should continue to pass all tests.

@ New test cases should be written if testing is inadequate.
°

Test failures: revert the refactoring and try again.

Rob Cameron Refactoring



Test-Driven Refactoring

@ Test cases validate current functionality.

@ Refactoring steps should continue to pass all tests.
@ New test cases should be written if testing is inadequate.
°

Test failures: revert the refactoring and try again.

Small Steps

@ Refactoring can be done in multiple small steps.

@ Each step should preserve correctness: pass all tests.
@ Each step should be a separate commit.

@ Good commit history makes it easy to use git-bisect to locate
bugs.

Rob Cameron Refactoring



A Note About Git-Bisect

Searching through Commits

@ A bug may be introduced by a particular commit.

@ Binary search can locate the responsible commit.

Rob Cameron Refactoring



A Note About Git-Bisect

Searching through Commits

@ A bug may be introduced by a particular commit.

@ Binary search can locate the responsible commit.

Git-Bisect Process

@ Find a good commit XXXXXX before the bug occurred.

@ git bisect good XXXXXX identifies the starting commit.

@ Now check out a later faulty commit and issue the
git bisect bad command.

@ Git then checks out a commit half-way between.

@ Test this commit and issue git bisect good or
git bisect bad based on test success or failure.

@ Git checks out the next commit to test using binary search.

@ Repeat until the faulty commit is identified!

Rob Cameron Refactoring




Incremental Refactoring

Catalogs of Refactorings are Known

@ Global renaming: variable/field/method names.

@ Method extraction: encapsulate a common code snippet.
@ Moving features between objects.
@ Simplifying conditional expressions.

@ Many others, see Refactoring: Improving the Design of
Existing Code, (Fowler et al)

Rob Cameron Refactoring



Incremental Refactoring
Catalogs of Refactorings are Known

@ Global renaming: variable/field/method names.

@ Method extraction: encapsulate a common code snippet.
@ Moving features between objects.

@ Simplifying conditional expressions.

@ Many others, see Refactoring: Improving the Design of
Existing Code, (Fowler et al)

IDE Support

@ Many IDEs support incremental refactoring.
@ Reduce or eliminate programmer errors in refactoring.

@ Allow larger refactorings to be composed of sequences of
smaller ones.

Rob Cameron Refactoring



Strategic Refactoring

Pattern-Driven Refactoring

@ Analysis of a software system may determine that it is should
be restructured according to a well-known design pattern.

@ Example: Model-View-Controller pattern.

e Separate the model, view and control components of an
interactive application.
e Good advice for interactive app development.

@ Improves quality for future maintainance.

@ Improves readability by using a well-known pattern.

Rob Cameron Refactoring



Strategic Refactoring
Pattern-Driven Refactoring

@ Analysis of a software system may determine that it is should
be restructured according to a well-known design pattern.
@ Example: Model-View-Controller pattern.

e Separate the model, view and control components of an
interactive application.
e Good advice for interactive app development.

@ Improves quality for future maintainance.

@ Improves readability by using a well-known pattern.

Reducing Coupling
@ Analysis of class structure may shown too many dependencies
between classes.

@ Restructuring to reduce coupling can make code more
modular and easier to understand and maintain.

Rob Cameron Refactoring



