
Software Refactoring: Investing in Software Quality

Rob Cameron

Computing Science 275
School of Computing Science

Simon Fraser University

October 18, 2021

Rob Cameron Refactoring



Refactoring: Improving Software Maintainability

Software Refactoring
Refactoring is the process of modifying a software code base to
improve quality while maintaining functionality intact.

Refactoring Goals
Readability: making software easier to understand.
Maintainability: making software easier to change.
Reusability: making software modules suitable for different
purposes.
Adaptability: making software amenable to changing use
cases.

Rob Cameron Refactoring



Refactoring: Improving Software Maintainability

Software Refactoring
Refactoring is the process of modifying a software code base to
improve quality while maintaining functionality intact.

Refactoring Goals
Readability: making software easier to understand.
Maintainability: making software easier to change.
Reusability: making software modules suitable for different
purposes.
Adaptability: making software amenable to changing use
cases.

Rob Cameron Refactoring



Refactoring Needed: The Problem of Bit Rot

Bit Rot
Software systems that go through many versions over time often
see a gradual detioration of code quality: bit rot.

Example: Code Bloat
New feature required similar to existing feature.
Existing feature implementation is cloned and altered.
Result: code duplication, bit rot.

Example: Shotgun Maintenance
New feature requires new logic in many places.
Shotgun pellets throughout the code

if (NewFeature) { ... }
Result: increasing complexity, bit rot.

Rob Cameron Refactoring



Refactoring Needed: The Problem of Bit Rot

Bit Rot
Software systems that go through many versions over time often
see a gradual detioration of code quality: bit rot.

Example: Code Bloat
New feature required similar to existing feature.
Existing feature implementation is cloned and altered.
Result: code duplication, bit rot.

Example: Shotgun Maintenance
New feature requires new logic in many places.
Shotgun pellets throughout the code

if (NewFeature) { ... }
Result: increasing complexity, bit rot.

Rob Cameron Refactoring



Refactoring Needed: The Problem of Bit Rot

Bit Rot
Software systems that go through many versions over time often
see a gradual detioration of code quality: bit rot.

Example: Code Bloat
New feature required similar to existing feature.
Existing feature implementation is cloned and altered.
Result: code duplication, bit rot.

Example: Shotgun Maintenance
New feature requires new logic in many places.
Shotgun pellets throughout the code

if (NewFeature) { ... }
Result: increasing complexity, bit rot.

Rob Cameron Refactoring



Refactoring Needed: Maintenance is Hard

Maintenance Activities
Bug fixes.
New features: adds complexity.
Adapting to new systems: adds complexity.

Maintenance Complexity
Maintainers not original designers.
Maintainers may be junior programmers.
Code understanding is hard.
Time pressure for fixes, new features.
Result: bit rot.

Rob Cameron Refactoring



Refactoring Needed: Maintenance is Hard

Maintenance Activities
Bug fixes.
New features: adds complexity.
Adapting to new systems: adds complexity.

Maintenance Complexity
Maintainers not original designers.
Maintainers may be junior programmers.
Code understanding is hard.
Time pressure for fixes, new features.
Result: bit rot.

Rob Cameron Refactoring



Refactoring as Investment

Refactoring in Maintenace
Focus is improving quality.
Reduce code bloat and complexity without adding features.
Bug fixes are incidental.

No particular bugs are the target of refactoring.
Refactoring may identify and remove bugs as part of code
clean-up.

Refactoring Cost-Benefit Tradeoff
Refactoring is an investment of time for future benefit.
Reduced future cost of bug fixes.
Reduced future cost of new feature additions.
Ability to reuse refactored components in future systems.
Increased ability to adapt systems for new applications.

Rob Cameron Refactoring



Refactoring as Investment

Refactoring in Maintenace
Focus is improving quality.
Reduce code bloat and complexity without adding features.
Bug fixes are incidental.

No particular bugs are the target of refactoring.
Refactoring may identify and remove bugs as part of code
clean-up.

Refactoring Cost-Benefit Tradeoff
Refactoring is an investment of time for future benefit.
Reduced future cost of bug fixes.
Reduced future cost of new feature additions.
Ability to reuse refactored components in future systems.
Increased ability to adapt systems for new applications.

Rob Cameron Refactoring



Test-Driven Refactoring

Test Cases First!
Test cases validate current functionality.
Refactoring steps should continue to pass all tests.
New test cases should be written if testing is inadequate.
Test failures: revert the refactoring and try again.

Small Steps
Refactoring can be done in multiple small steps.
Each step should preserve correctness: pass all tests.
Each step should be a separate commit.
Good commit history makes it easy to use git-bisect to locate
bugs.

Rob Cameron Refactoring



Test-Driven Refactoring

Test Cases First!
Test cases validate current functionality.
Refactoring steps should continue to pass all tests.
New test cases should be written if testing is inadequate.
Test failures: revert the refactoring and try again.

Small Steps
Refactoring can be done in multiple small steps.
Each step should preserve correctness: pass all tests.
Each step should be a separate commit.
Good commit history makes it easy to use git-bisect to locate
bugs.

Rob Cameron Refactoring



A Note About Git-Bisect

Searching through Commits
A bug may be introduced by a particular commit.
Binary search can locate the responsible commit.

Git-Bisect Process
Find a good commit XXXXXX before the bug occurred.
git bisect good XXXXXX identifies the starting commit.
Now check out a later faulty commit and issue the
git bisect bad command.
Git then checks out a commit half-way between.
Test this commit and issue git bisect good or
git bisect bad based on test success or failure.
Git checks out the next commit to test using binary search.
Repeat until the faulty commit is identified!

Rob Cameron Refactoring



A Note About Git-Bisect

Searching through Commits
A bug may be introduced by a particular commit.
Binary search can locate the responsible commit.

Git-Bisect Process
Find a good commit XXXXXX before the bug occurred.
git bisect good XXXXXX identifies the starting commit.
Now check out a later faulty commit and issue the
git bisect bad command.
Git then checks out a commit half-way between.
Test this commit and issue git bisect good or
git bisect bad based on test success or failure.
Git checks out the next commit to test using binary search.
Repeat until the faulty commit is identified!

Rob Cameron Refactoring



Incremental Refactoring

Catalogs of Refactorings are Known
Global renaming: variable/field/method names.
Method extraction: encapsulate a common code snippet.
Moving features between objects.
Simplifying conditional expressions.
Many others, see Refactoring: Improving the Design of
Existing Code, (Fowler et al)

IDE Support
Many IDEs support incremental refactoring.
Reduce or eliminate programmer errors in refactoring.
Allow larger refactorings to be composed of sequences of
smaller ones.

Rob Cameron Refactoring



Incremental Refactoring

Catalogs of Refactorings are Known
Global renaming: variable/field/method names.
Method extraction: encapsulate a common code snippet.
Moving features between objects.
Simplifying conditional expressions.
Many others, see Refactoring: Improving the Design of
Existing Code, (Fowler et al)

IDE Support
Many IDEs support incremental refactoring.
Reduce or eliminate programmer errors in refactoring.
Allow larger refactorings to be composed of sequences of
smaller ones.

Rob Cameron Refactoring



Strategic Refactoring

Pattern-Driven Refactoring
Analysis of a software system may determine that it is should
be restructured according to a well-known design pattern.
Example: Model-View-Controller pattern.

Separate the model, view and control components of an
interactive application.
Good advice for interactive app development.

Improves quality for future maintainance.
Improves readability by using a well-known pattern.

Reducing Coupling
Analysis of class structure may shown too many dependencies
between classes.
Restructuring to reduce coupling can make code more
modular and easier to understand and maintain.

Rob Cameron Refactoring



Strategic Refactoring

Pattern-Driven Refactoring
Analysis of a software system may determine that it is should
be restructured according to a well-known design pattern.
Example: Model-View-Controller pattern.

Separate the model, view and control components of an
interactive application.
Good advice for interactive app development.

Improves quality for future maintainance.
Improves readability by using a well-known pattern.

Reducing Coupling
Analysis of class structure may shown too many dependencies
between classes.
Restructuring to reduce coupling can make code more
modular and easier to understand and maintain.

Rob Cameron Refactoring


