
Assignment 4

CMPT307
Summer 2020
Assignment 4
Due Wed Aug 5 at 23:59
4 problems, 40 points.

1. Let G = (V,E) be a directed graph with weighted edges, edge weights
can be positive, negative, or zero. Suppose vertices of G are partitioned
into k disjoint subsets V1, V2, . . . , Vk; that is, every vertex of G belongs to
exactly one subset Vi. For each i and j, let δ(i, j) denote the minimum
shortest-path distance between vertices in Vi and vertices in Vj , that is

δ(i, j) = min{dist(u, v) | u ∈ Vi and v ∈ Vj}

Describe an algorithm to compute δ(i, j) for all i and j. For full credit,
your algorithm should run in O(V E + kV log V) time. (10 points)

Solution: To solve this problem, there are two key issues: first is how
to represent and efficiently measure shortest path between subsets rather
than vertices. Second is how to deal with the negative weighted path.

For the first issue, we add 2k vertices {s1, s2, . . . , sk} ∪ {t1, t2, . . . , tk},
and add weight-0 edges to connect si to every v ∈ Vi and every v ∈ Vi to
ti, i = 1, 2, . . . , k. In this case, to find the minimum shortest-path distance
between vertices in Vi and vertices in Vj is equivalent to finding shortest-
path distance from si and tj . We denote G′ = {V ′, E′} to represent the
new graph and have

V ′ = V ∪ {s1, s2, . . . , sk} ∪ {t1, t2, . . . , tk} (1)

E′ = E ∪ {(si, v), (v, ti)|v ∈ Vi, i = 1, 2, . . . , k} (2)

.

For the second issue, we use re-weighting similar to the Johnson’s Algo-
rithm. Below is the algorithm, which is a modified Johnson’s Algorithm.

Time complexity analysis: step-1 takes O(V + E) time cost, step-2 takes
O((V + k)(cE) + V + (V + E)) = O(V E) time cost, step-3 takes O(k ∗
(E+V log V +k)) = O(kE+kV log V) time cost. So the time complexity
of our algorithm is O(V E + kV log V).

1

Algorithm 1: Shortest Path(G,V)

// G is the given directed graph;
// w(u, v) denotes the weight of edge (u, v);
// V = {V1, V2, . . . Vk};
dist← a k × k matrix;
// Step-1: build G′ from G;
G′ ← {V ′, E′} build using Eq.(1),(2) on G;
// Step-2: reweight G′;
G′′ ← {V ′′, E′′} where V ′′ = V ′ ∪ {o} and E′′ = {E′ ∪ {o, v} : v ∈ V ′};
if Bellman-Ford(G′′, o) is False then

return NIL;
end
foreach v ∈ V ′′ do

h(v) = δ(o, v)(from Bellman-Ford);
end
foreach edge (u, v) ∈ E′ do

ŵ(u, v) = w(u, v) + h(u)− h(v);
end
// Step-3: repeatly run Dijkstra to find shortest path from si to tj
foreach si ∈ {s1, s2, . . . , sk} do

run Dijkstra(G′, ŵ, si) to compute δ(si, v) for all v ∈ V ′;
for each Vj do

dist[i, j] = δ(si, tj)− h(si) + h(tj);
end

end

2

2. Let G = {V,E} be a flow network in which every edge has capacity 1 and
the shortest-path distance from s to t is at least d. (10 points)

(a) Prove that the value of the maximum (s, t)-flows is at most E/d.

Solution: Suppose that the value of max flow is larger thant E/d,
written as |f |m > E/d. Since each edge is with capacity 1, according
to the definition of flow, there exist |f |m paths from s to t such
that each two paths are disjoint (no overlapping edges). Each path
contribute value 1 to the flow. Since shortest path distance from s to
t is ≥ d, each path contains ≥ d edges. So the total number of edges
within the max flow ≥ |f |m ∗d > E/d∗d = E. This contradicts with
the definition of E which is the number of edges within the graph.

(b) Now suppose that G is simple, meaning that for all vertices u and v,
there is at most one edge from u to v. Prove that the value of the
maximum (s, t)-flow is at most O(V 2/d2).

Solution: Let’s divide vertices V into subsets {V1, V2, . . .}, Vi con-
tains vertices whose shortest path distance to s is i. There are more
than d subsets and t will not belong to the first d− 1 subsets.

Let’s consider Vi and Vi+1. There does not exists edges from previous
subsets of Vi to subsequent subsets of Vi+1. That is, edges satisfying
below equation doesn’t exist:

{(u, v)|u ∈ Va, v ∈ Vb, a < i, b ≥ i+ 1 or a ≤ i, b > i+ 1}

This is easy to prove. If such (u, v) exists, the vertex v would not be
allocate to Vb since there is a path from s to v across u with distance
a+ 1. This contradicts with how we build Vi.

In this case, define a cut (S, T) of G such that S = {s}∪V1 ∪ . . .∪Vi
and T = Vi+1 ∪ Vi+2 ∪ Edges from S to T is exactly the edges
from Vi to Vi+1. So the capacity of the cut is the total number of
edges from Vi to Vi+1, written as

∑
u∈Vi

∑
v∈Vi+1

1.

Consider the average situation for big O. First, pair the Vi as V1
with V2, V3 with V4, etc. There are at least (d − 1)/2 such pairs.
Let Vi and Vi+1 be the pair with the least number of vertices overall.
By pigeonhole principle, this number is at most n/((d − 1)/2) =
2n/(d− 1). If x is the number of vertices in Vi, then (2n/(d− 1)−x)
is the number of vertices in Vi+1. The maximum number of edges
from Vi to Vi+1 is x ∗ (2n/(d− 1)− x), which attains a maximum of
n2/(d − 1)2 when x = n/(d − 1). So the Vi to Vi+1 cut has at most
O(n2/d2) edges. This is a bound on the max flow, since the max flow
is no more than the capacity of of any cut. So the value of max flow
is at most O(V 2/d2).

3. A cycle cover of a given directed graph G = (V,E) is a set of vertex-
disjoint cycles that cover every vertex in G. Describe and analyze an

3

efficient algorithm to find a cycle cover for a given graph, or correctly
report that no cycle cover exists. (10 points)

Hint: use bipartite matching. But G is not bipartite, so you’ll have to use
a graph derived from G.

Solution: To solve this problem, we build a new bipartite graph G′ from
G. Below is the the brief description, the time complexity of this algorithm
is O(V E).

(a) build a bipartite graph G′ from G. The left vertex set of G′ is L = V ,
meanwhile the right set is R = V (R is a copy of V). For each edge
(u, v) ∈ E, add an edge (uL, vR) to G′ where uL represents the vertex
u in set L and vR the vertex v in set R.

(b) find the maximum bipartite matching of G′ using Ford-Fulkerson
algorithm. If the maximum bipartite matching is a perfect matching
(all vertices are matched), this matching corresponds to a cycle cover
of G. If the maximum matching is not a perfect matching, then there
is no cycle cover exists.

Algorithm 2: Cycle Cover(G(V,E))

// Step-1: build G′(V ∪ V,E′), a bipartite graph generated from G;
build G′ with L = V and R = V ;
for each edge (u, v) ∈ E do

add edge (uL, vR) to E′;
end
// Step-2: find maximum bipartite matching of G′;
G′′(V ′′, E′′)← a flow network built from G′ with source s and sink t;
f ← Ford-Fulkerson(G′′, s, t);
M ← set of edges (uL, vR) been used in f , uL ∈ L, vR ∈ R;
if |M | == |V | then

// cycle cover exists;
cover = {};
for (uL, vR) ∈M do

add (u, v) to cover;
end
return cover;

else
// no cycle cover;
return NIL;

end

4. Solve the equation by using an LUP decomposition. (For full credit, show

4

your detail steps.) (10 points) 1 −2 1
0 2 −8
−4 5 9

 x1
x2
x3

 =

 0
8
−9

Solution: We use

P =

 1 0 0
0 1 0
0 0 1

after LUP decomposition, we have

L =

 1 0 0
0 1 0
−4 −1.5 1

 , U =

 1 −2 1
0 2 −8
0 0 1

Use the decomposition, we have

LUx = Pb

We define y = Ux then compute Ly = Pb and have

y =
(

0 8 3
)T

Then have
x =

(
29 16 3

)T

5

