
Assignment 2

CMPT307
Summer 2020
Assignment 2
Due Wed June 24 at 23:59
3 problems, 40 points.

1. Improve the Longest Common Subsequence (LCS) algorithm (10 points):

(a) Show how to compute the length of an LCS using only 2 min(m,n)
entries in the c table plus O(1) additional space. Express in pseu-
docode. Then analyze the memory space usage of your algorithm. (5
points)

Solution: (4 points for the algorithm, 1 point for the space analysis)

Since we only use the previous row of the c table to compute the
current row, we compute as normal, but only keep two rows of the
table. When we go to compute row k, we overwrite row k − 2 since
we will never need it again to compute the length.

Below (Algorithm 1) is the pseudocode. We assume that n ≤ m. (If
m < n, then exchange X and Y to make the situation the same.)
The space usage includes 2 min(m,n) + 2 used by an 2-d array a and
O(1) used by variables m,n.

(b) Then show how to do the same thing, but using min(m,n) entries plus
O(1) additional space. Again, express in pseudocode, and analyze the
memory space usage of your algorithm. (5 points)

Solution: (4 points for the algorithm, 1 point for the space analysis)

To use min(m,n) + O(1) space, observe that to compute c[i, j], all
we need are the entries c[i− 1, j], c[i− 1, j − 1] and c[i, j − 1]. Thus,
we can free up entry-by-entry those from the previous row which we
will never need again, reducing the space requirement to min(m,n).

Below is the pseudocode. We assume that n ≤ m. (If m < n, then
exchange X and Y to make the situation the same.) Notice that the
key idea is, when dealing with the {i, j} entry, a[0 . . . j] store the value
of memo[i, 0 . . . j] of previous matrix, and a[j + 1 . . . n] corresponds
to the i−1-th row, which is memo[i−1, j + 1 . . . n]. The space usage
is min(m,n) + O(1), which include min(m,n) + 1 used by an array
a, and O(1) used by the four variables (m,n, topleft, tmp).

1



Algorithm 1: LCS 2min(X, Y)

m← length(X);
n← length(Y );
allocate matrix a[0 : 1, 0 . . . n] = 0;
for i in 0, . . . ,m do

for j in 0, . . . , n do
if i == 0 or j == 0 then

a[1, j] = 0;
else

if X[i] == Y [j] then
a[1, j] = a[0, j − 1] + 1;

else
a[1, j] = max(a[0, j], a[1, j − 1]);

end

end

end
a[0, 0 . . . n] = a[1, 0 . . . n];

end
return a[1, n];

Algorithm 2: LCS min(X, Y)

m← length(X);
n← length(Y );
allocate array a[0, . . . , n] = 0;
for i in 0, . . . ,m do

topleft = 0;
for j in 0, . . . , n do

if i == 0 or j == 0 then
topleft = a[j];
a[j] = 0;

else
if X[i] == Y [j] then

tmp = topleft;
topleft = a[j];
a[j] = tmp + 1;

else
topleft = a[j];
a[j] = max(a[j − 1], a[j]);

end

end

end

end
return a[n];

2



2. Refer to the power of 2 problem (Lecture 12, slides p21) (10 points).

(a) Redo the problem using the accounting method. (5 points)

Solution:

Table 1:
Operation i Actual cost Amortized cost

i = 2k i 2
i 6= 2k 1 3

or

Table 2:
Operation i Actual cost Amortized cost

i = 2k i 3
i 6= 2k 1 3

We prove that for Table 1.

To verify the correctness, we should prove that
∑n

i=1 ci ≤
∑n

i=1 ĉi.
If i is not power of 2, the i-th operation has cost 1 and is paid 3, so
it remains 2 credits.

We start from n = 1, obviously we have a credit of 2 and
∑n

i=1 ci ≤∑n
i=1 ĉi holds.

Now suppose
∑n

i=1 ci ≤
∑n

i=1 ĉi holds for n = 2k, so after 2k-th
operation, the credit ≥ 0. Now consider n = 2k+1, there are 2k − 1
numbers between 2k and 2k+1, thus the accumulated credit is 2k+1−
2. Then the 2k+1-th operation is paid 2, the total credit now is 2k+1,
which equals to the cost 2k+1.

(b) Redo the problem using the potential method. (5 points)

Solution: We define the potential function Φ which satisfies Φ(D0) =
0 and

Φ(Di) =

{
k + 3 for i = 2k

Φ(D2k) + 2(i− 2k) for otherwise
(1)

where k is the largest integer such that 2k ≤ i for the second sub-
function.

Then we discuss ĉi in two cases:

case 1: if i is not a power of 2,

ĉi = ci + Φ(Di)− Φ(Di−1)

= ci + Φ(D2k) + 2(i− 2k)− Φ(D2k)− 2((i− 1)− 2k)

= 1 + 2

= 3

(2)

3



cast 2: if i is a power of 2, that is, i = 2k,

ĉi = ci + Φ(Di)− Φ(Di−1)

= ci + (k + 3)− (Φ(D2k−1) + 2(i− 1− 2k−1))

= ci + (k + 3)− (k − 1 + 3 + 2i− 2− 2k)

= ci + 3− 2k

= 3

(3)

or

Φ(Di) = 2i− 2k (4)

where k is the smallest integer such that 2k > i. Then we discuss ĉi
as follow:

case 1:if i is not a power of 2,

ĉi = ci + Φ(Di)− Φ(Di−1)

= ci + (2i− 2k)− (2(i− 1)− 2k)

= ci + 2

= 3

(5)

case 2: if i is a power of 2, that is, i = 2k,

ĉi = ci + Φ(Di)− Φ(Di−1)

= ci + (2i− 2k+1)− (2(i− 1)− 2k)

= ci + 2− 2k

= 2k + 2− 2k

= 2

(6)

4



3. Coin changing (20 points):

Consider the problem of making change for n cents using the fewest num-
ber of coins. Assume that each coin’s value is an integer.

(a) Describe a greedy algorithm to make change consisting of quarters,
dimes, nickels, and pennies. Prove that your algorithm yields an
optimal solution. (7 points)

Solution: (3 points for the greedy algorithm, 4 points for the proof
of optimal solution. )

Make change([25, 10, 5, 1], v)

Algorithm 3: Make change(coins, v)

n = length(coins);
numcoins[0, . . . , n− 1] = 0;
surplus = v;
for i in 0, . . . , n− 1 do

numcoins[i] = floor(surplus/coins[i]);
surplus = surplus− numcoins[i] ∗ coins[i];

end
return numcoins;

To prove it provides an optimal solution:

To make change for n cents using 25, 10, 5, 10, at most 2 dimes, 1
nickle and 4 pennies will be used. And the change made by dimes,
nickels and pennies must be less than 25 cents. For example, if 2
nickles are used, it can be replaces by a dime and with 1 less coin,
this wouldn’t happen in our greedy algorithm.

Suppose there exists a n that the greedy algorithm doesn’t give the
optimal solution. Let n0, n1, n2, n3 represent the number of coins
used by the greedy algorithm, corresponding to quarter, dime, nickel,
penny. Let n′0, n

′
1, n
′
2, n
′
3 be the number of coins used by the optimal

solution.

Since the greedy algorithm uses as many quarters as possible at the
beginning, we have n′0 ≤ n0. Now we show that n′0 < n0 is not true.
If n′0 < n0 and c = n0 − n′0, it means that the optimal solution will
make change for c × 25 cents using dimes, nickles and pennies. In
this case, the total number of coins used for c × 25 coins cannot be
less than 3c (2 dimes and 1 nickle), replace it using c quarters can
obvious provide a better solution. If a better solution exists, n′0 is
not the optimal solution. So we have n′0 = n0.

Analyze the usage of dimes, nickles and pennies using the above idea,
we will have n′1 = n1, n′2 = n2 and n′3 = n3. The greedy algorithm
provides an optimal solution.

5



(b) Suppose that the available coins are in the denominations that are
powers of c, i.e., the denominations are c0, c1, . . . , ck for some integers
c > 1 and k ≥ 1. Show that the greedy algorithm always yields an
optimal solution. (4 points)

Solution: Given an optimal solution {x0, x1, . . . , xk} where xi indi-
cates the number of coins of denomination ci.

We will show that we must have xi < c for xi by c and increase xi+1

by 1. This collection of coins has the same value and has c− 1 fewer
coins, so the original solution must be non-optimal.

This configuration of coins is exactly the same as you would get if you
kept greedily picking the largest coin possible. This is because to get a
total value of V , you would pick xk = bV c−kc and for i < k, xi = b(V
mod ci+1)c−i. This is the only solution that satisfies the property
that there aren’t more than c of any but the largest denomination
because the coin amounts are a base c representation of V mod ck.

(c) Give a set of coin denominations for which the greedy algorithm does
not yield an optimal solution. Your set should include a penny so
that there is a solution for every value of n. (3 points)

Solution: For example, [1, 3, 4] to make change for 6; [1, 5, 6] to make
change for 10; etc.

(d) Give an O(nk)-time algorithm that makes change for any set of k
different coin denominations, assuming that one of the coins is a
penny. (6 points)

Solution: use dynamic programming. See algorithm 4 below.

6



Algorithm 4: Make change(S, v)

numcoins[0, . . . , v − 1] = 0;
coin[0, . . . , v − 1] = 0;
for i in 0, . . . , v do

bestcoin = −1;
bestnum =∞;
for c in S do

if numcoins[i− c] + 1 < bestnum then
bestnum = numcoins[i− c] + 1;
bestcoin = c;

end

end
numcoins[i] = bestnum;
coin[i] = bestcoin;

end
let change be an empty set;
iter = v;
while iter > 0 do

add coin[iter] to change;
iter = iter − coin[iter];

end
return change

7


