Assignment 2

CMPT307
Summer 2020
Assignment 2
Due Wed June 24 at 23:59
3 problems, 40 points.

1. Improve the Longest Common Subsequence (LCS) algorithm (10 points):

 (a) Show how to compute the length of an LCS using only $2 \min(m, n)$ entries in the c table plus $O(1)$ additional space. Express in pseudocode. Then analyze the memory space usage of your algorithm. (5 points)

 Solution: (4 points for the algorithm, 1 point for the space analysis)
 - Since we only use the previous row of the c table to compute the current row, we compute as normal, but only keep two rows of the table. When we go to compute row k, we overwrite row $k-2$ since we will never need it again to compute the length.
 - Below (Algorithm 1) is the pseudocode. We assume that $n \leq m$. (If $m < n$, then exchange X and Y to make the situation the same.)
 - The space usage includes $2 \min(m, n) + 2$ used by an 2-d array a and $O(1)$ used by variables m, n.

 (b) Then show how to do the same thing, but using $\min(m, n)$ entries plus $O(1)$ additional space. Again, express in pseudocode, and analyze the memory space usage of your algorithm. (5 points)

 Solution: (4 points for the algorithm, 1 point for the space analysis)
 - To use $\min(m, n) + O(1)$ space, observe that to compute $c[i, j]$, all we need are the entries $c[i-1, j], c[i-1, j-1]$ and $c[i, j-1]$. Thus, we can free up entry-by-entry those from the previous row which we will never need again, reducing the space requirement to $\min(m, n)$.
 - Below is the pseudocode. We assume that $n \leq m$. (If $m < n$, then exchange X and Y to make the situation the same.) Notice that the key idea is, when dealing with the $\{i, j\}$ entry, $a[0 \ldots j]$ store the value of $\text{memo}[i, 0 \ldots j]$ of previous matrix, and $a[j + 1 \ldots n]$ corresponds to the $i-1$-th row, which is $\text{memo}[i-1, j+1 \ldots n]$. The space usage is $\min(m, n) + O(1)$, which include $\min(m, n) + 1$ used by an array a, and $O(1)$ used by the four variables $(m, n, topleft, tmp)$.

1
Algorithm 1: LCS_2min(X, Y)

\[m \leftarrow \text{length}(X); \]
\[n \leftarrow \text{length}(Y); \]
allocate matrix \(a[0 : 1, 0 \ldots n] = 0; \)
for \(i \) in 0, \ldots, m do
 for \(j \) in 0, \ldots, n do
 if \(i == 0 \) or \(j == 0 \) then
 \(a[1, j] = 0; \)
 else
 if \(X[i] == Y[j] \) then
 \(a[1, j] = a[0, j - 1] + 1; \)
 else
 \(a[1, j] = \max(a[0, j], a[1, j - 1]); \)
 end
 end
end
\(a[0, 0 \ldots n] = a[1, 0 \ldots n]; \)
return \(a[1, n]; \)

Algorithm 2: LCS_min(X, Y)

\[m \leftarrow \text{length}(X); \]
\[n \leftarrow \text{length}(Y); \]
allocate array \(a[0, \ldots, n] = 0; \)
for \(i \) in 0, \ldots, m do
 topleft = 0;
 for \(j \) in 0, \ldots, n do
 if \(i == 0 \) or \(j == 0 \) then
 topleft = \(a[j]; \)
 \(a[j] = 0; \)
 else
 if \(X[i] == Y[j] \) then
 tmp = topleft;
 topleft = \(a[j]; \)
 \(a[j] = tmp + 1; \)
 else
 topleft = \(a[j]; \)
 \(a[j] = \max(a[j - 1], a[j]); \)
 end
 end
end
return \(a[n]; \)
2. Refer to the power of 2 problem (Lecture 12, slides p21) (10 points).

(a) Redo the problem using the accounting method. (5 points)

Solution:

<table>
<thead>
<tr>
<th>Table 1:</th>
<th>Operation</th>
<th>Actual cost</th>
<th>Amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 2^k$</td>
<td>i</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$i \not= 2^k$</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Table 2:</th>
<th>Operation</th>
<th>Actual cost</th>
<th>Amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 2^k$</td>
<td>i</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$i \not= 2^k$</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

We prove that for Table 1.

To verify the correctness, we should prove that $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$.

If i is not power of 2, the i-th operation has cost 1 and is paid 3, so it remains 2 credits.

We start from $n = 1$, obviously we have a credit of 2 and $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$ holds.

Now suppose $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$ holds for $n = 2^k$, so after 2^k-th operation, the credit ≥ 0. Now consider $n = 2^{k+1}$, there are $2^k - 1$ numbers between 2^k and 2^{k+1}, thus the accumulated credit is $2^{k+1} - 2$. Then the 2^{k+1}-th operation is paid 2, the total credit now is 2^{k+1}, which equals to the cost 2^{k+1}.

(b) Redo the problem using the potential method. (5 points)

Solution: We define the potential function Φ which satisfies $\Phi(D_0) = 0$ and

$$\Phi(D_i) = \begin{cases}
 k + 3 & \text{for } i = 2^k \\
 \Phi(D_{2^k}) + 2(i - 2^k) & \text{for } otherwise
\end{cases}$$

where k is the largest integer such that $2^k \leq i$ for the second sub-function.

Then we discuss \hat{c}_i in two cases:

- **case 1**: if i is not a power of 2,

 $$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

 $$= c_i + \Phi(D_{2^k}) + 2(i - 2^k) - \Phi(D_{2^k}) - 2((i-1) - 2^k)$$

 $$= 1 + 2$$

 $$= 3$$
cast 2: if i is a power of 2, that is, $i = 2^k$,

$$
\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \\
= c_i + (k + 3) - (\Phi(D_{2^k-1}) + 2(i - 1 - 2^{k-1})) \\
= c_i + (k + 3) - (k-1 + 3 + 2i - 2 - 2^k) \\
= c_i + (k + 3) - (k - 1 + 3 + 2i - 2 - 2^k) \\
= c_i + 3 - 2^k \\
= 3
$$

(3)

or

$$\Phi(D_i) = 2i - 2^k$$

(4)

where k is the smallest integer such that $2^k > i$. Then we discuss \hat{c}_i as follow:

case 1: if i is not a power of 2,

$$
\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \\
= c_i + (2i - 2^k) - (2(i - 1) - 2^k) \\
= c_i + 2 \\
= 3
$$

(5)

case 2: if i is a power of 2, that is, $i = 2^k$,

$$
\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \\
= c_i + (2i - 2^{k+1}) - (2(i - 1) - 2^k) \\
= c_i + 2 - 2^k \\
= 2^k + 2 - 2^k \\
= 2
$$

(6)
3. Coin changing (20 points):
 Consider the problem of making change for \(n \) cents using the fewest number of coins. Assume that each coin’s value is an integer.

 (a) Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and pennies. Prove that your algorithm yields an optimal solution. (7 points)

 Solution: (3 points for the greedy algorithm, 4 points for the proof of optimal solution.)

 \(Make_change([25, 10, 5, 1], v) \)

 Algorithm 3: Make_change(coins, v)

   ```
   n = length(coins);
   numcoins[0, ..., n - 1] = 0;
   surplus = v;
   for i in 0, ..., n - 1 do
     numcoins[i] = floor(surplus/coins[i]);
     surplus = surplus - numcoins[i]*coins[i];
   end
   return numcoins;
   ```

 To prove it provides an optimal solution:

 To make change for \(n \) cents using 25, 10, 5, 10, at most 2 dimes, 1 nickle and 4 pennies will be used. And the change made by dimes, nickels and pennies must be less than 25 cents. For example, if 2 nickles are used, it can be replaces by a dime and with 1 less coin, this wouldn’t happen in our greedy algorithm.

 Suppose there exists a \(n \) that the greedy algorithm doesn’t give the optimal solution. Let \(n_0, n_1, n_2, n_3 \) represent the number of coins used by the greedy algorithm, corresponding to quarter, dime, nickel, penny. Let \(n'_0, n'_1, n'_2, n'_3 \) be the number of coins used by the optimal solution.

 Since the greedy algorithm uses as many quarters as possible at the beginning, we have \(n'_0 \leq n_0 \). Now we show that \(n'_0 < n_0 \) is not true. If \(n'_0 < n_0 \) and \(e = n_0 - n'_0 \), it means that the optimal solution will make change for \(e \times 25 \) cents using dimes, nickles and pennies. In this case, the total number of coins used for \(e \times 25 \) coins cannot be less than \(3e \) (2 dimes and 1 nickle), replace it using \(e \) quarters can obvious provide a better solution. If a better solution exists, \(n'_0 \) is not the optimal solution. So we have \(n'_0 = n_0 \).

 Analyze the usage of dimes, nickles and pennies using the above idea, we will have \(n'_1 = n_1, n'_2 = n_2 \) and \(n'_3 = n_3 \). The greedy algorithm provides an optimal solution.
(b) Suppose that the available coins are in the denominations that are powers of c, i.e., the denominations are c^0, c^1, \ldots, c^k for some integers $c > 1$ and $k \geq 1$. Show that the greedy algorithm always yields an optimal solution. (4 points)

Solution: Given an optimal solution \{x_0, x_1, \ldots, x_k\} where x_i indicates the number of coins of denomination c^i.

We will show that we must have $x_i < c$ for x_i by c and increase x_{i+1} by 1. This collection of coins has the same value and has $c - 1$ fewer coins, so the original solution must be non-optimal.

This configuration of coins is exactly the same as you would get if you kept greedily picking the largest coin possible. This is because to get a total value of V, you would pick $x_k = \lfloor Vc^{-k} \rfloor$ and for $i < k$, $x_i = \lfloor (V \mod c^{i+1})c^{-i} \rfloor$. This is the only solution that satisfies the property that there aren’t more than c of any but the largest denomination because the coin amounts are a base c representation of $V \mod c^k$.

(c) Give a set of coin denominations for which the greedy algorithm does not yield an optimal solution. Your set should include a penny so that there is a solution for every value of n. (3 points)

Solution: For example, $[1, 3, 4]$ to make change for 6; $[1, 5, 6]$ to make change for 10; etc.

(d) Give an $O(nk)$-time algorithm that makes change for any set of k different coin denominations, assuming that one of the coins is a penny. (6 points)

Solution: use dynamic programming. See algorithm 4 below.
Algorithm 4: Make_change(S, v)

\[\text{numcoins}[0, \ldots, v - 1] = 0; \]
\[\text{coin}[0, \ldots, v - 1] = 0; \]
\[\text{for } i \text{ in } 0, \ldots, v \text{ do} \]
\[\quad \text{bestcoin} = -1; \]
\[\quad \text{bestnum} = \infty; \]
\[\quad \text{for } c \text{ in } S \text{ do} \]
\[\quad \quad \text{if } \text{numcoins}[i - c] + 1 < \text{bestnum} \text{ then} \]
\[\quad \quad \quad \text{bestnum} = \text{numcoins}[i - c] + 1; \]
\[\quad \quad \quad \text{bestcoin} = c; \]
\[\quad \text{end} \]
\[\text{numcoins}[i] = \text{bestnum}; \]
\[\text{coin}[i] = \text{bestcoin}; \]
\[\text{end} \]
\[\text{let change be an empty set;} \]
\[\text{iter} = v; \]
\[\text{while } \text{iter} > 0 \text{ do} \]
\[\quad \text{add } \text{coin}[\text{iter}] \text{ to change;} \]
\[\quad \text{iter} = \text{iter} - \text{coin}[\text{iter}]; \]
\[\text{end} \]
\[\text{return change} \]