
© 2020 Shermer Dynamic Programming I 1

Dynamic Programming:
Assembly-line scheduling

Chapter 15.1

© 2020 Shermer Dynamic Programming I 2

Dynamic Programming

A method for solving optimization problems:
problems that ask for a minimum or maximum
value.

Developing a dynamic programming solution:

1. Characterize structure of an optimal solution

a. Optimal substructure

b. Overlapping subproblems

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, avoiding
overlap

4. Construct an optimal solution from computed values.

© 2020 Shermer Dynamic Programming I 3

Assembly-line scheduling
(2nd ed. §15.1)

Two assembly lines, with processing and transfer
times. Stations S1,j and S2,j do the same job.

What is the fastest way from start to finish?

© 2020 Shermer Dynamic Programming I 4

Assembly-line example

In this example, the fastest way through uses S1,1,
S2,2, S1,3, S2,4, S2,5, and S1,6

© 2020 Shermer Dynamic Programming I 5

Assembly-line scheduling

1. Characterize structure of an optimal solution
a. Optimal substructure

b. Overlapping subproblems

The best solution is the quickest one of

• getting through S1,n as quickly as
possible, followed by going through
the line one exit.

• getting through S2,n as quickly as
possible, followed by going through
the line two exit.

S1,n

S2,n

x1

x2

© 2020 Shermer Dynamic Programming I 6

Assembly-line scheduling
Getting through S1,n as quickly as possible is accomplished
by the quickest one of:

• getting through S1,n-1 as quickly
as possible, followed by going
through S1,n

• getting through S2,n-1 as quickly
as possible, followed by going
through the transfer from line
two to line one, followed by
going through S1,n

Getting through S2,n as quickly as possible is symmetric.

S1,n

S2,n

s1,n-1

s2,n-1

t2,n-1

t2,n-1

© 2020 Shermer Dynamic Programming I 7

Assembly-line scheduling
Getting through S1,j (where j > 1) as quickly as possible is
accomplished by the quickest one of:

• getting through S1,j-1 as quickly
as possible, followed by going
through S1,j

• getting through S2,j-1 as quickly
as possible, followed by going
through the transfer from line
two to line one, followed by
going through S1,j

Getting through S2,j as quickly as possible is symmetric.

S1,j

S2,j

s1,j-1

s2,j-1

t2,j-1

t2,j-1

© 2020 Shermer Dynamic Programming I 8

Optimal substructure
This problem has optimal substructure: the subproblems
solved are of the same type and must be solved optimally.

Getting through S1,j as quickly as possible is accomplished by the
quickest one of:

• getting through S1,j-1 as quickly as possible, followed by going
through S1,j

• getting through S2,j-1 as quickly as possible, followed by going
through the transfer from line two to line one, followed by going
through S1,j

© 2020 Shermer Dynamic Programming I 9

Overlapping subproblems
This problem has overlapping subproblems: different
subproblems require the same subproblem(s) in their
solution.

Getting through S1,j as quickly as possible depends on:

• getting through S1,j-1 as quickly as possible

• getting through S2,j-1 as quickly as possible

Getting through S2,j as quickly as possible depends on:

• getting through S2,j-1 as quickly as possible

• getting through S1,j-1 as quickly as possible

d
if
fe

re
n
t

su
b
p
ro

b
le

m
s

pairs of same
subproblems

© 2020 Shermer Dynamic Programming I 10

Recursive definition
2. Recursively define the value of an optimal solution

Assume we are given matrices s[1..2,1..n], t[1..2,1..n-1], e[1..2]
and x[1..2] defining the problem.

Let f[i, j] denote the time taken from the start in the quickest way
of getting through Si,j

f[i, j] = min(f[i, j-1], f[3-i, j-1] + t[3-i, j-1]) + s[i, j]

(for j > 1)

f[i, 1] = e[i] + s[i, 1]

© 2020 Shermer Dynamic Programming I 11

Recursive definition
The value of an optimal solution is

min(f[1, n] + x[1], f[2, n] + x[2]).

By implementing f as a function call, we now have a
recursive algorithm for our problem:

solution() { return min(f(1,n) + x[1], f(2,n) + x[2]);}

f(i,j) {

if (j=1)

return e[i] + s[i,1];

else

return min(f(i,j-1), f(3-i, j-1) + t[3-i, j-1]) + s[i, j]

© 2020 Shermer Dynamic Programming I 12

Analysis of straight recursion
Let T(j) denote the time taken for function f(i, j).

Then the time for the entire solution is O(1) + T(n).

T(j) = c if j = 1

T(j) = 2T(j-1) + c if j > 1

T(j) = (2j-1)c or Θ(2j)

So the time for the entire solution is Θ(2n). Exponential is
bad. But this does not take into account the overlapping
subproblems.

© 2020 Shermer Dynamic Programming I 13

Memoization
3. Compute the value of an optimal solution, avoiding
overlap.

solution() {

allocate matrix m[1..2, 1..n] = 0 // memos

return min(f(1,n) + x[1], f(2,n) + x[2]);

}

f(i,j) {

if(m[i,j]  0) return m[i, j];

if (j=1)

m[i,j] = e[i] + s[i,1];

else

m[i,j] = min(f(i,j-1), f(3-i, j-1) + t[3-i, j-1]) + s[i, j];

return m[i, j];

}

© 2020 Shermer Dynamic Programming I 14

Analysis of memoization
Allocating m[] takes O(n) or O(1) time depending on model.

Consider all calls to f(i, j). Let k be the number of such calls.

Then k – 2n of them return inside the first if, taking O(1) time
each. (Because m[] holds 2n values and each time through the
rest of the function fills in 1 previously unfilled value.)

For the remaining 2n calls, there is O(1) nonrecursive work
apiece. (The recursive work is counted in the “consider all
calls”.)

We conclude that the total work over all calls to f(i,j) is
(k-2n) ∙ O(1) + 2n ∙ O(1)

= O(k) + O(n).

© 2020 Shermer Dynamic Programming I 15

Analysis of memoization
So what is k?

solution() calls f(i, j) twice.

f(i, j) passes the first if 2n times, and each time this happens it
has the potential to call f(i, j) twice.

Thus the total number of calls, k, is at most 4n+2.

The total work of the algorithm is therefore the total work for
solution() plus the total work in f(i,j), or

O(n) + (O(k) + O(n))

= O(n) + (O(n) + O(n))

= O(n).

That’s a far sight better than Θ(2n).

© 2020 Shermer Dynamic Programming I 16

Memoization traceback
4. Construct an optimal solution from computed values.

solution() {

allocate matrix m[1..2, 1..n] = 0 // memos

if(f(1,n) + x[1] < f(2,n) + x[2]) { // note this fills memo table

return traceback(1, n) and f(1, n) + x[1];

}

else {

return traceback(2, n) and f(2, n) + x[2];

}

}

© 2020 Shermer Dynamic Programming I 17

Memoization traceback
traceback(i, j) {

if (j=1) {

return (Si,j) // by (Si,j) I mean “station i,j”

} // however you encode it.

if(m[i,j] = m[i, j-1] + s[i, j]) {

path = traceback(i, j-1)

}

else {

path = traceback(3-i, j-1)

}

return path + (Si,j)

}

© 2020 Shermer Dynamic Programming I 18

Storing choices
If the green condition on the previous slide is slow to compute,
you can alternatively store your choices along the way.

solution() {

allocate matrix m[1..2, 1..n] = 0 // memos

allocate matrix ch[1..2, 1..n] = 0 // choices

if(f(1,n) + x[1] < f(2,n) + x[2]) { // note this fills memo table

return traceback(1, n) and f(1, n) + x[1];

}

else {

return traceback(2, n) and f(2, n) + x[2];

}

}

© 2020 Shermer Dynamic Programming I 19

Storing choices
f(i,j) {

if(m[i,j]  0) return m[i, j];
if (j=1)

m[i,j] = e[i] + s[i,1];
else {

pathOneTime = f(i, j-1) + s[i, j];
pathTwoTime = f(3-i, j-1) + t[3-i, j-1] + s[i, j];
if(pathOneTime < pathTwoTime) {

m[i, j] = pathOneTime;
ch[i, j] = i;

}
else {

m[i, j] = pathTwoTime;
ch[i, j] = 3-i;

}
}
return m[i, j];

}

© 2020 Shermer Dynamic Programming I 20

Storing choices
Now, tracing back through the stored choices is easy:

traceback(i, j) {

if (j=1) {

return (Si,j) // by (Si,j) I mean “station i,j”

} // however you encode it.

return traceback(ch[i, j], j-1) + (Si,j)

}

© 2020 Shermer Dynamic Programming I 21

Dynamic Programming
Dynamic programming is computing the memos without
recursion. Typically it is “bottom-up” (e.g. starting at j=1)
rather than “top-down” (e.g. starting at j=n).
solution() {

allocate matrix m[1..2, 1..n]

for(j=1 to n)

for(i = 1 to 2)

m[i, j] = f(i, j);

return min(m[1,n] + x[1], m[2,n] + x[2]);

}

f(i, j) {

if(j = 1) return e[i] + s[i, j];

else

return min(m[i,j-1], m[3-i, j-1] + t[3-i, j-1]) + s[i, j];

}

© 2020 Shermer Dynamic Programming I 22

Equivalent pseudocode
TIMTOWTDI. There is more than one way to do it.

Sometimes you might see DP written without the
recursively-formulated function.

solution() {

allocate matrix m[1..2, 1..n]

m[1, 1] = e[1] + s[1, 1]

m[2, 1] = e[2] + s[2, 1]

for(j=2 to n)

for(i = 1 to 2)

m[i, j] = min(m[i,j-1], m[3-i, j-1] + t[3-i, j-1]) + s[i, j];

return min(m[1,n] + x[1], m[2,n] + x[2]);

}

© 2020 Shermer Dynamic Programming I 23

Dynamic Programming
Traceback
Traceback can be done the same way for DP as was done
for memoization: the traceback() function is the same.
One can also use the method of storing choices.

Exercise: write a modification of the previous version of solution() that
stores the choices made.

(solve exercise before viewing next two slides)

© 2020 Shermer Dynamic Programming I 24

Dynamic Programming
Traceback

solution() {

allocate matrix m[1..2, 1..n]

allocate matrix ch[1..2, 1..n]

m[1, 1] = e[1] + s[1, 1] // ch[1, 1] and ch[2,1] not needed.

m[2, 1] = e[2] + s[2, 1]

for(j=2 to n) {

for(i = 1 to 2) {

pathOneTime = m[i, j-1] + s[i, j]

pathTwoTime = m[3-i, j-1] + t[3-i, j-1] + s[i, j]

if(pathOneTime < pathTwoTime) {

m[i, j] = pathOneTime;

ch[i, j] = i;

}

else {

m[i, j] = pathTwoTime;

ch[i, j] = 3-i;

}

}

}

© 2020 Shermer Dynamic Programming I 25

Dynamic Programming
Traceback

if(m[1,n] + x[1] < m[2,n] + x[2]) { // note this fills memo table

return traceback(1, n) and m[1, n] + x[1];

}

else {

return traceback(2, n) and m[2, n] + x[2];

}

}

Software engineering note: this is a long subroutine. In object-oriented
style, such long subroutines are discouraged: they should be broken into
smaller subroutines for readability. Only write code in this way if you’ve
already written the readable version and profiling (detailed timing of the
running code) tells you that speed is a bottleneck in this part of the
program.

