Divide-and-Conquer

7 2 9 4 → 2 4 7 9

7 2 2 7
7 → 7 2 → 2

9 4 4 9
9 → 9 4 → 4
Divide-and-Conquer

Divide-and conquer is a general algorithm design paradigm:

- **Divide**: divide the input data S in two or more disjoint subsets S_1, S_2, ...
- **Recur**: solve the subproblems recursively
- **Conquer**: combine the solutions for S_1, S_2, ..., into a solution for S

The base case for the recursion are subproblems of constant size

Analysis can be done using recurrence equations
Merge-Sort Review

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- **Recur**: recursively sort S_1 and S_2
- **Conquer**: merge S_1 and S_2 into a unique sorted sequence

Algorithm mergeSort(S)

Input sequence S with n elements

Output sequence S sorted

```
if $S$.size() > 1
    $(S_1, S_2) \leftarrow \text{partition}(S, n/2)$
    mergeSort($S_1$)
    mergeSort($S_2$)
    $S \leftarrow \text{merge}(S_1, S_2)$
```
Merge-Sort

Algorithm `mergeSort(S)`

if `S.size()` > 1

 \((S_1, S_2) \leftarrow \text{partition}(S, n/2)\)
 `mergeSort(S_1)`
 `mergeSort(S_2)`
 \(S \leftarrow \text{merge}(S_1, S_2)\)

\(T(n) = \text{time for mergeSort on sequence } S \text{ of } n \text{ elements.}\)

\(O(1)\) \(O(n)\)
\(O(n)\) \(T(n/2)\)
\(O(n)\) \(T(n/2)\)
\(O(n)\)

\[T(n) = \begin{cases}
O(1) & n = 1 \\
2T\left(\frac{n}{2}\right) + O(n) & n > 1
\end{cases} \]

\(T(n) \in O(n \log n)\)
Median-Sort

Median-sort on an input sequence S with n elements consists of three steps:

- **Divide**: find the median of S and partition S into those elements less than the median (S_1) and those elements greater than or equal to the median (S_2).
- **Recur**: recursively sort S_1 and S_2
- **Conquer**: append S_2 to S_1

Algorithm $medianSort(S)$

Input sequence S with n elements

Output sequence S sorted

if $S.size() > 1$

$m \leftarrow median(S)$

$(S_1, S_2) \leftarrow mpartition(S, m)$

$medianSort(S_1)$

$medianSort(S_2)$

$S \leftarrow append(S_1, S_2)$
Median-Sort

Algorithm \textit{medianSort}(S)

\begin{align*}
\text{if } S.\text{size}() &> 1 \\
& m \leftarrow \text{median}(S) \\
& (S_1, S_2) \leftarrow \text{partition}(S, m) \\
& \text{medianSort}(S_1) \\
& \text{medianSort}(S_2) \\
& S \leftarrow \text{append}(S_1, S_2)
\end{align*}

\[T(n) = \text{time for mediansort on sequence } S \text{ of } n \text{ elements.} \]

\[T(n) = \begin{cases}
O(1) & n = 1 \\
2T\left(\frac{n}{2}\right) + O(n) & n > 1
\end{cases} \]

\[T(n) \in O(n \log n) \]
Closest Pair (§33.4)

Given: A set Q of points in two dimensions

Find: The distance between the closest pair of points of Q
Closest Pair – Main idea

Divide: the points into left half Q_L and right half Q_R

Recur: solve the problem on both halves

Conquer: use the minimum from the two halves *and* the Q_L to Q_R pairs.
Let δ be the minimum of the distances returned from the recursive solutions to the Q_L and Q_R subproblems.

Consider only points within δ of the vertical dividing line.

Sort these points by y-coordinate, giving list Y'.

Check each point of Y' against the **seven** points that follow it, computing their distance and updating a minimum distance δ' between all Q_L to Q_R pairs.
Why does 7 work?

All points in Q_L are distance at least δ apart, as are all points in Q_R. In the extreme, a point q of Q_L can fit in three more points of Q_L of decreasing y before going a distance of δ in y-coordinate alone (a, b, and c as shown). It can fit in four points of Q_R after it before passing δ in y-coordinate difference (q, d, e, and c as shown). Thus, any Q_L to Q_R pair with distance less than δ can be found by examining each point in the 2δ-wide strip around the dividing line and the seven points that follow it.
Algorithm ClosestPair(Q)

Input: A set of points Q

Output: The distance between the closest pair in Q

if |Q| > 3 then
 divide Q into left and right halves Q_L and Q_R
 \(d_L = \text{ClosestPair}(Q_L)\)
 \(d_R = \text{ClosestPair}(Q_R)\)
 \(\delta = \min(d_L, d_R)\)
 Q’ = points of Q within \(\delta\) of the dividing line
 sort Q’ by y-coordinate
 check distance of each point of Q’ to next seven points,
 maintaining minimum distance in \(\delta\)
 return \(\delta\)
Analysis

<table>
<thead>
<tr>
<th>Algorithm ClosestPair(Q)</th>
<th>T(n) = time for ClosestPair on a set Q of n points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A set of points Q</td>
<td>Output: The distance between the closest pair in Q</td>
</tr>
<tr>
<td>if</td>
<td>then</td>
</tr>
<tr>
<td></td>
<td>divide Q into left and right halves Q_L and Q_R</td>
</tr>
<tr>
<td></td>
<td>d_L = ClosestPair(Q_L)</td>
</tr>
<tr>
<td></td>
<td>d_R = ClosestPair(Q_R)</td>
</tr>
<tr>
<td></td>
<td>δ = min(d_L, d_R)</td>
</tr>
<tr>
<td></td>
<td>Q’ = points of Q within δ of the dividing line</td>
</tr>
<tr>
<td></td>
<td>sort Q’ by y-coordinate</td>
</tr>
<tr>
<td></td>
<td>check distance of each point of Q’ to next seven points,</td>
</tr>
<tr>
<td></td>
<td>maintaining minimum distance in δ</td>
</tr>
<tr>
<td></td>
<td>return δ</td>
</tr>
</tbody>
</table>
Analysis

\[T(n) = \begin{cases}
O(1) & n \leq 3 \\
2T(n/2) + O(n \log n) & n > 3
\end{cases} \]

The Master Method (from text) does not apply!
So we plug-and-chug:
\[
T(n) = 2T(n/2) + cn \log n \\
= 2(2T(n/4) + c(n/2) \log (n/2)) + cn \log n \\
= 4T(n/4) + cn \log (n/2) + cn \log n \\
= 8T(n/8) + cn \log (n/4) + cn \log (n/2) + cn \log n \\
\vdots \\
= (n/2)T(2) + cn (\log 2 + \log 4 + \ldots + \log (n/2) + \log n) \\
= nk/2 + cn(1 + 2 + 3 + \ldots + \log n) \\
= nk/2 + cn(\log n)((\log n) + 1)/2 \\
= O(n) + O(n \log^2 n) \in O(n \log^2 n)
\]
We can get the actual pair of closest points by keeping this information with d_L, d_R, and δ when these values are computed or returned.

We can do better than $O(n \log^2 n)$:
Note that we’re getting $O(n \log n)$ from sorting in two places: when we divide, and when we put together the points in the 2δ-wide strip in the conquer step. Instead of doing this, we can do two sorts of all points in the beginning, one by x-coordinate and one by y-coordinate. Then, when we divide or combine elements of Q, we divide these sorted lists as well. Details are in the text.
This leads to a recursion:

$$T(n) = \begin{cases}
O(1) & n \leq 3 \\
2T(n/2) + O(n) & n > 3
\end{cases}$$

which is $O(n \log n)$.

Drawing a line on a screen

In graphics, a basic problem is to draw a line (segment) on a display screen.
Suppose we start with an n by n grid of pixels and a line segment S. We ask: what pixels does S intersect?

There are several algorithms for answering this question.

We’ll consider the divide-and-conquer approach on the grid.

For convenience, consider n=2^k.
Line drawing

To draw S on the grid G, we will simply draw S on each quadrant of the grid. At a very high level:

\[
\text{DrawLine}(S, G) \\
\text{DrawLine}(S, 1^{st} \text{ quadrant of } G) \\
\text{DrawLine}(S, 2^{nd} \text{ quadrant of } G) \\
\text{DrawLine}(S, 3^{rd} \text{ quadrant of } G) \\
\text{DrawLine}(S, 4^{th} \text{ quadrant of } G)
\]

Analysis:

\(O(1)\) for figuring out quadrants
\(4T(n/2)\) for the subproblems

So \(T(n) = 4T(n/2) + c\), and \(T(1) = c\): thus \(T(n) \in O(n^2)\)
Line drawing

At a high level:

\[\text{DrawLine}(S, G) \]

if(G is 1 by 1)

if(S intersects G)

setPixel(G)

else

figure out quadrants of G

DrawLine(S, 1^{st} quadrant of G)
DrawLine(S, 2^{nd} quadrant of G)
DrawLine(S, 3^{rd} quadrant of G)
DrawLine(S, 4^{th} quadrant of G)
Line drawing

We can save time if S doesn’t intersect the grid:

```
DrawLine(S, G)
    if(S does not intersect G)
        return
    else if(G is 1 by 1)
        setPixel(G)
    else
        figure out quadrants Q₁, Q₂, Q₃, Q₄ of G
        DrawLine(S, Q₁)
        DrawLine(S, Q₂)
        DrawLine(S, Q₃)
        DrawLine(S, Q₄)
```
Better Analysis

\[\text{DrawLine}(S, G) \]

\[
\begin{align*}
\text{if}(S \text{ does not intersect } G) & \quad O(1) \\
\text{return} & \quad O(1) \\
\text{else if}(G \text{ is 1 by 1}) & \quad O(1) \\
\text{setPixel}(G) & \quad O(1) \\
\text{else} & \\
\text{figure out quadrants } Q_1, Q_2, Q_3, Q_4 \text{ of } G & \quad O(1) \\
\text{DrawLine}(S, Q_1) \\
\text{DrawLine}(S, Q_2) \\
\text{DrawLine}(S, Q_3) \\
\text{DrawLine}(S, Q_4) \\
\end{align*}
\]

\[3T(n/2) + O(1) \]

So \(T(n) = 3T(n/2) + O(1), \ T(1) = c: \text{ thus } T(n) \text{ is } O(n^{\log 3}) \approx O(n^{1.585}) \]
Lower level pseudocode

```plaintext
DrawLine(S, G, (x₀, y₀), (x₁, y₁))
    if(S does not intersect the box from (x₀, y₀) to (x₁, y₁))
        return
    else if(x₁ - x₀ ≤ 1 and y₁ - y₀ ≤ 1)
        setPixel(G, x₀, y₀)
    else
        xₘ = (x₀ + x₁) / 2
        yₘ = (y₀ + y₁) / 2
        DrawLine(S, G, (xₘ, yₘ), (x₁, y₁))
        DrawLine(S, G, (x₀, yₘ), (xₘ, y₁))
        DrawLine(S, G, (x₀, y₀), (xₘ, yₘ))
        DrawLine(S, G, (xₘ, y₀), (x₁, yₘ))
```

© 2020 Shermer
A note on line drawing and pseudocode

Divide-and-conquer on the grid does not do well for this problem. There are iterative algorithms which take $O(n)$ time.

I used the problem simply as an example of an approach to try, and to show how with a little refinement one may be able to get better asymptotic bounds. I also wanted to illustrate the difference between high-level and low-level pseudocode.

Knowing which level to write pseudocode at is a matter of judgement that you can develop over time. It mainly depends on your audience and what aspects of the solution you are trying to convey. For the purposes of this course, assume your audience doesn’t know much.